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automation tools. This collection of scenarios provided sufficient test coverage for predict-
ing the behavior of a full-scale mission critical embedded system at reduced development
costs. Leveraging technology from the DARPA Model-Based Integration of Embedded
Software (MoBIES) program [Roll 2003], allowed for rapid development of large scale
scenarios. MoBIES program products included a component-based real-time Open Exper-
iment Platform (OEP) and associated development tool set with well-defined XML based
interfaces. For benchmarking purposes, a modified version of a MoBIES Product Scenario
with oscillating modal behavior was selected. This product scenario has been identified as
the “1X” scenario and is illustrated in Fig. 34. The original version provided use of three
rate group priority threads (20Hz, 5Hz, and 1Hz), event correlation, and modal behavior.

Larger-scale scenarios were created incrementally by duplicating component classes and
instances from the 1X scenario. For example, a 20X scenario was created by duplicating
the eight application component instances above the Physical Device layer twenty times.
In addition to duplicating component instances, component types were also increased via a
simple copy/renaming approach to also scale the associated code base. The 100X scenario
contains a representative number of components and events in a typical single processor
avionics system, while executing within a representative multi-rate cyclical context, and
is therefore used to evaluate success criteria. Success criteria is based on Boeing’s ex-
perience with mission critical large scale avionics systems. Fig. 35 illustrates the flight
configuration.
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Larger-scale scenarios were created incrementally by duplicating component
classes and instances from the 1X scenario. For example, a 20X scenario was
created by duplicating the eight application component instances above the
Physical Device layer twenty times as depicted in Figure 2. In addition to
duplicating component instances, component types were also increased via a
simple copy/renaming approach to also scale the associated code base.
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Figure 1: RTJES Modal 1X Scenario
Fig. 34. The overview of the Boeing PRiSMj 1X scenario.
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We propose to address issue of configuration and adaption of middleware architecture by focusing one

representative DRE application. The software in question implements flight control, threat assessment, and

route deconfliction algorithms for the SCANEAGLE Unmanned Aerial Vehicle (UAV)1. The SCANEAGLE

A is an UAV under joint development by The Boeing Company and The Insitu Group in an effort to meet

the demand for an affordable, fully autonomous vehicle with high endurance. Equipped with an onboard

inertially stabilized daylight video camera, SCANEAGLE A can stay aloft for 15 hours, traveling hundreds

of miles. Fig. 2 depicts the UAV and gives information about the hardware configuration used in flight.
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Figure 2: ScanEagle Unmanned Aerial Vehicle with a PowePC processor running Embedded Linux.

In the system we are considering in this project, which is a feature complete and flight-tested configura-

tion, the UAV is controlled by Prismj, an experimental DRE avionics controller designed to operate under

hard real-time constraints. Prismj is written in the Real-Time Specification for Java (RTSJ) by the Boeing

company. It is a realistic multi-rate cyclic avionics execution context with a number of components and

events that are typical in production avionics mission-critical computing systems. The application runs over

100 threads in three rate groups (20Hz, 5Hz, and 1Hz). These threads perform different tasks. There is a

single infrastructure thread which acts as a cyclic executive and pushes events to components in the physical

device layer. Based on those events, 5Hz and 20Hz threads perform computations on components dedi-

cated to the Global Positioning System (GPS), airframe, tactical steering, and navigation steering. The 1 Hz

thread is a pilot control component and periodically switches all components in the system between tactical

a navigation steering.

The ScanEagle DRE middleware stack, illustrated in Fig. 3, starts with the Prismj application. Prismj

can be configured to use different event channels, transport layers, virtual machines and operating systems.

In the following we consider only one static configuration. Prismj components communicate internally by

the means of an Event Channel. An event channel is a standard interface for decoupling event producers

and consumers. The FACET event channel is a customizable real-time Java event channel from Washington

University of St. Louis [16, 20]. A transport layer is needed for communication between the UAV and the

ground station. This is achieved by configuring FACET to use Zen. Zen is a CORBA object request broker

(ORB) designed to support distributed, real-time, and embedded applications. Zen is written in RTSJ by UC

Irvine [27]. Prismj relies on classpath, an open source implementation of the Java standard libraries from

GNU and Purdue’s open sourced Real-time Specification for Java libraries.

The real-time virtual machine used to run Prismj is a configuration of the Ovm framework. The Ovm

project provides an open source framework for building language runtimes. Ovm is a toolkit with the basic

1The system was developed within the PCES program by Boeing, Purdue, UC Irvine and Washington University of St. Louis.
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Fig. 1. A ScanEagle UAV with the Boeing PRiSMj software and the Ovm Real-time JVM.

tant as large scale DRE systems are being developed in Java, e.g. for avionics, shipboard
computing and simulation [Child 2004; 2003; Benowitz and Niessner 2003a; Sharp et al.
2003]. The success of these projects hinges on the RTSJ’s ability to combine plain Java
components with real-time ones. As of this writing commercial implementations of the
specification have been released by IBM, SUN, Aonix, Aicas, and Timesys. A number of
research projects are working on open source implementations [Timesys Inc 2003; Corsaro
and Schmidt 2002a; Purdue University - S3 Lab 2005; Nilsen 1998; Buytaert et al. 2002;
Tryggvesson et al. 1999; Gleim 2002; Siebert 1999]. This paper discusses our implemen-
tation of the RTSJ in the Ovm customizable virtual machine framework and its use within
the DARPA PCES project.

The DARPA PCES project’s Capstone Demonstration integrated several independently
developed real-time software systems into a live demonstration of their combined func-
tionality, using both real and simulated components. As part of that demonstration, Boeing
and Purdue University demonstrated autonomous navigation capabilities on an Unmanned
Air Vehicle (UAV) known as the ScanEagle (Fig. 1).

The ScanEagle UAV is four-feet long, has a 10-foot wingspan, and can remain in the air
for more than 15 hours. The primary operational use of the ScanEagle vehicle is to pro-
vide intelligence, surveillance and reconnaissance data. The ScanEagle software, called
PRiSMj, was developed using the Boeing Open Experiment Platform (OEP) and asso-
ciated development tool set. The OEP provides a number of different run-time product
scenarios which illustrate various combinations of component interaction patterns found in
actual avionics systems. These product scenarios contain representative component config-
urations and interactions. These product scenarios were developed using three rate group
priority threads (20Hz, 5Hz, and 1Hz) and an event notification mechanism.

The PCES project was a success. PRiSMj with Ovm was the first Real-Time Specifi-
cation for Java system to pass Boeing’s internal qualification tests. Ovm and PRiSMj met
all of Boeing’s operational requirements and the flight test conducted in April 2005 was a
success. The system was awarded a Java 2005 Duke’s Choice Award for innovation in Java
technology.
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Fig. 2 illustrates the architecture of the Ovm, from the low-level kernel components up
to the GNU Classpath library, which we use as the standard library. The executive do-
main implements the core functionality of Java, such as monitors, memory allocation, type
casts, and exceptions. Because all of this functionality is normally accessed by Java pro-
grams using ordinary bytecode instructions, the Ovm’s compiler must know how to trans-
late these instructions into appropriate executive domain method calls. This is achieved
via a glue layer called the CoreServicesAccess (CSA). For example, instructions such
as MONITORENTER or ATHROW are translated into calls to CSA methods. Because a CSA
call leads to execution of Java code, recursive CSA calls are possible. For example, the
implementation of monitor entry may allocate memory using the NEW instruction, which
then causes another call into the CSA.

Domains in the Ovm are firmly segregated. The executive domain can only call into
the user domain using a reflection API. On the other hand, the user domain can only call
into the executive domain using LibraryImports. The Ovm compiler recognizes UD
classes that have the name LibraryImports. Any native methods in a library im-
ports class are translated into calls to methods of the same name in the executive domain
RuntimeExports object.

Because Ovm is written in Java, the ordinary Java notion of native code does not apply.
Native method calls in the GNU Classpath [FSF 2005] library are translated into calls to
regular Java methods which then use library imports to access system functionality. This
process of translating user domain native methods is called LibraryGlue. As such, the
typical calling sequence for Java native methods goes like this: native method → library
glue → library imports → runtime exports → Ovm kernel method that implements the
requested functionality.
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Fig. 2. Overview of the Ovm architecture. The virtual machine consists of two domains, an executive domain
(ED) and a user domain (UD). The interaction between the domains is mediated by the CoreServicesAccess
class. It is defined in ED and accessed from the UD either by direct calls inserted by the compiler or by calls to a
distinguished LibraryImport class. Standard Java libraries are provided by the GNU CLASSPATH project.
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VM_Address getMem(int size)
throws PragmaNoPollcheck, PragmaNoBarriers {

VM_Address ret = base().add(offset);
offset += size;
Mem.the().zero(ret.add(ALIGN), offset == rsize?size-ALIGN:size);
return ret;

}

Fig. 3. Java implementation of getMem(), the bump pointer allocater in class TansientArea. This
allocator is used by scoped memory areas and ensure allocation times linear in the size of the allocated object
(due to zeroing). Notice the use of the VM Address types to represent native memory locations.

static VM_Address* getMem(TransientArea* area, jint size){
jint s1 = area + area->offset;
area->offset += size;
jint s2 = s1 + (&SplitRegionManager)->ALIGN;
jint s3 = (area->offset == area->rsize)?
(size-(&SplitRegionManager)->ALIGN) : size;

PollingAware_zero(roots->values[57]), s2, s3);
return sl;

}

Fig. 4. The C++ translation of the getMem() method performed by the j2c ahead-of-time compiler. (Type
casts are omitted, and names shortened for readability.) This method is not virtual and can be inlined by the GCC
backend. The receiver object is made explicit in the translation as an additional argument to the method. Address
operation are performed by pointer arithmetic. The call to the zero() method is a statically determined call.
In fact, after translation all occurrence of dynamic method invocation have been eliminated.

that are recognized by the Ovm compiler and translated into efficient low-level operations.
When this is combined with static analysis to remove some overheads such as dynamic
binding the resulting code is close to what one would write in a C++ virtual machine. We
illustrate the process with a prototypical example of low-level behavior – the bump pointer
allocator used to allocate memory in scoped memory areas. Fig. 3 gives the Java code for
the allocation routine. The operations on the VM Address class have no meaning in Java;
in fact we will never allocate instances VM Address. Instead this class will be translated
down to native operations. But, even in this case we still get benefits from writing the
code in Java. As VM Address is expressed as a Java class, we can give it methods and
have the Java type system make sure that only those methods will be used on instance of
that class. The Ovm defines a hierarchy of memory related classes: VM Word for basic bit
manipulation and VM Address for pointer arithmetic. Ovm also has a class Oop which
stands for an address that points to the start of an object. Garbage collectors further extend
Oop. For instance a moving garbage collector would define MovingGC as a particular kind
of Oop that has a field for storing forwarding pointers.

Ovm also supports a number of compiler pragmas, which are expressed in Java as ex-
ception types. Methods can be annotated by a pragma by mentioning it in the method’s
throws clause1. The main pragmas are given here:

1This design predates Java 5.0. One can now use meta-data to this end.
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void someMethod() {

...
while(...) {

...

}
}

⇒

void someMethod() {
POLLCHECK();
...
while(...) {

...
POLLCHECK();

}
}

Fig. 5. Compiler inserted cooperative multi-threading. In Ovm rescheduling can only occur at poll-checks instruc-
tions inserted by the compiler in the bytecode. All code paths must eventually encounter a poll-check instruction.
Bounding the number of instructions between is a key part in reducing preemption latency.

union {
struct {
volatile int16_t notSignaled;
volatile int16_t notEnabled;

} s;
volatile int32_t pollWord;

} pollUnion;

POLLCHECK:
if (pollUnion.pollWord == 0) {
pollUnion.s.notSignaled = 1;
pollUnion.s.notEnabled = 1;
handleEvents();

}

Fig. 6. Definition of the 32-bit polling word and the compiler inserted code fragment implementing the check.
No synchronization is required as rescheduling can only occur when handleEvents() is executed and there
is only one thread active at any given time.

check. (c) Fast dynamic deactivation: PragmaAtomic disables interruptions due to poll-
checks. Many critical path methods use PragmaAtomic. Hence, it should be possible to
rapidly disable and re-enable poll-checks.

Ovm uses simple atomic operations over a 32-bit polling word, shown in Fig. 6. The
s.notSignaled field is one by default, and set to zero whenever a signal occurs. s.not-
Enabled if zero when polling is enabled, and is one when disabled. A poll-check then is
a simple matter of comparing pollWord to zero. If they are equal, a signal occurred and
polling is enabled. The fast path is a load and a compare. The slow path involves disabling
checks and clearing the signal, and then entering the event handling code. Polling must
be disabled because the event handler may call into common code that was compiled with
injected poll-checks.

3.6 Memory Management and the Executive Domain
In a Java in Java virtual machine, the most natural approach to memory management is
for the executive domain (ED) to rely on the very same garbage collection (GC) algorithm
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Fig. 7. Ovm memory region stack. Java applications use memory regions directly via the javax.-
realtime.MemoryArea API as well as indirectly when accessing other VM services. The SplitReg-
ionManager class provides support for regions and moving garbage collection for heap allocated data.

used to reclaim user domain objects. However this is not sufficient to meet hard real-time
requirements, the ED must be able to preempt the collector at any time. The executive can
thus not rely on GC, or at least not entirely. In Ovm, some critical ED data structures are
allocated outside of the reach of the collector. In fact, we use the same code used to imple-
ment memory areas within the executive. There is a single instance of MemoryManager
class which provides an interface to the garbage collector and to memory areas. The ED
uses objects of the type VM Area to represent memory areas internally, even for heap and
immortal memory.
MemoryManager is an interface with multiple implementations. For example, in an

Ovm configurations tuned for throughput, the memory manager serves as glue for the
generic memory management toolkit MMTk [Blackburn et al. 2004]. In an RTSJ config-
uration, we use our own split region mostly-copying garbage collector, which implements
a conservative semi-space collector for lower priority threads and provides region-based
memory management for real-time threads. The term split region refers to the fact that
memory is split into heap and non-heap parts which are managed separately, thereby al-
lowing scoped memory management to occur even when the garbage collector is running.

The primary goal of using regions is to ensure timely completion of ED/UD operations.
However, two additional goals can be identified. Firstly, performing an ED call should not
leak memory into the caller’s scope, with the exception of operations that are commonly
understood to require allocation (such as expanding a monitor, or allocating a file descrip-
tor for I/O). Secondly, ED operations should never cause a memory access violation, i.e.
MemoryAccessError or IllegalAssignmentError to be thrown.

A requirement for a memory API is to be able to change the effective allocation context
efficiently. As Ovm supports many configurations with very different memory manage-
ment policies, it is important to be able to specify a logical mapping of data to memory
independently from its actual implementation. So, for instance, in a RTSJ configuration
some data must be allocated in non-GCed memory, while in a plain Java all data can be al-
located in GCed space. Ovm defines an interface, named MemoryPolicy which insulates
the source code of the VM from the configuration’s memory management implementation.
This interface exposes a number of logical allocation contexts, shown in Fig. 8, and hides
they physical mapping. A non-real-time configuration may link all of these areas to the
heap. Some areas, like the repository query area and the scratch pad area, are usually one
and the same.
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public ValueUnion call(Oop recv) {
VM_Area area = MemoryManager.the().getCurrentArea();
Object r1 = MemoryPolicy.the().enterScratchPadArea();
try {

InvocationMessage msg = makeMessage();
VM_Area r2 = MemoryManager.the().setCurrentArea(area);
try {

ReturnMessage ret = msg.invoke(recv);
ret.rethrowWildcard();
return ret.getReturnValue();

} finally { MemoryManager.the().setCurrentArea(r2); }
} finally { MemoryPolicy.the().leave(r1); }

}

Fig. 10. Scratch Pad. A scratch pad is a thread-local temporary memory area with a clearly delimited lifetime.
The call() method implements the semantics of a cross-domain call. It starts in the caller’s area, area, before
entering the scratch pad with enterScratchPadArea(). The message object is allocated there, then the
associated method is invoked and the return value or exception is retrieved. Before returning, the allocation
context is restored, setCurrentArea, and scratch memory is reclaimed with leave().

The memory management issues here are related to allocation of the reflective data struc-
tures. Consider the case where a cross-domain call is initiated while in scoped memory
area (or immortal), allocating the message object in the current area will cause a memory
leak and possibly an out-of-memory error. This is not acceptable as this is occurs in a
place where the user does not expect allocation to happen. The solution relies on one im-
portant property of the cross-domain invocation protocol, namely that the message object
is garbage once the call returns. The obvious solution is thus to allocate the object in a
thread-local scratch pad as shown in Fig. 10. The scratch pad can be cleared when the
method returns.

Thread scheduling poses another problem. The state of threads is allocated includes
queue nodes. Whenever an instance of class Thread or one of its real-time subclasses is
allocated, all data structures are created in the current allocation context. If the thread is
created while in a scoped memory area, then the seemingly simple operation of placing
the thread onto the ready queue becomes error prone as the queue node is also allocated in
scoped memory and thus may cause a memory access violation. The solution here is based
on careful scope lifetime management and memory access check elision.

3.7 Scoped Memory and Region Based Memory Management
The RTSJ identifies three different kinds of memory: heap, immortal and scoped memory.
Heap memory has the traditional Java semantics with a garbage collector. Immortal mem-
ory is a globally accessible sequence of memory locations used to hold objects which are
never reclaimed. Scoped memory supports reclamation of individual scopes. It relies on a
reference counting scheme such that when no thread is in a scope, the scope can be cleared
of objects and reclaimed.

As scopes can be reclaimed it is essential that no references to objects in a scope are
stored in variables (fields or array elements) that have a longer lifetime than the object
being referred to. Otherwise, when the scope is reclaimed, a reference could be left “dan-
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void storeCheck(VM_Address src, int offset, VM_Address tgt)
throws PragmaNoPollcheck, PragmaNoBarriers, PragmaInline {
int sb = src.asInt() >>> blockShift;
int tb = tgt.asInt() >>> blockShift;
if (sb != tb) storeCheckSlow(sb, tb);

}

Fig. 11. RTSJ write barrier fast path. storeCheck() verifies if the two objects are allocated in the same block.
If not, follow the slow path. The method is inserted before every write to a reference field and is always inlined.

void storeCheckSlow(int sb, int tb)
throws PragmaNoPollcheck, PragmaNoBarriers, PargamNoInline {
VM_Word tidx = VM_Word.fromInt(tb - scopeBaseIndex);
if (!tidx.uLessThan(scopeBlocks)) return;
Area ta = scopeOwner[ tidx.asInt() ];
VM_Word sidx = VM_Word.fromInt(sb - scopeBaseIndex);
if (!sidx.uLessThan(scopeBlocks)) fail();
Area sa = scopeOwner[sidx.asInt()];
if (sa == ta) return;
if ((ta.prange - sa.crange) & MASK) != RES) fail();

}

Fig. 12. RTSJ write barrier slow path. storeCheckSlow() fails, throwing an exception, if the assignment
would violate RTSJ memory semantics. There are two failure cases: if we try to store a a reference to a scope
allocated object into the heap or immortal, and if we try to store a reference to an object with shorter or disjoint
lifetime. This method is never inlined.

void readBarrier(VM_Address src)
throws PragmaInline, PragmaNoBarriers, PragmaNoPollcheck {

if (!doLoadCheck) return;
if (src.diff(heapBase).uLessThan(heapSize)) fail();

}

Fig. 13. RTSJ read barrier. readBarrier() fails if the current thread is a NoHeapRealtimeThread and
the target of the reference is a heap location. This code is inserted before every load of a reference field and is
always inlined.

VM_Area areaOf(Oop mem) {
VM_Word off = VM_Address.fromObject(mem).diff(heapBase);
if (off.uLT(VM_Word.fromInt(heapSize))) return heapArea;
off = VM_Address.fromObject(mem).diff(scopeBase);
if (!off.uLT(VM_Word.fromInt(scopeSize))) return immortalArea;
int idx = off.asInt() >>> blockShift;
return scopeOwner[idx];

}

Fig. 14. The areaOf() method returns the memory area of an object which can be either heap, immortal or
scoped. We keep a mapping from memory blocks to scoped memory instances, scopeOwner, to speed up
discovery.
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POSIX I/O Emulator

Ovm Async I/O Framework

SIGIO Select Polling

CLASSPATH Library

Operating System

Stalling

Fig. 21. Ovm I/O subsystem stack. An implementation of the POSIX I/O API based on AsyncIO is provided
to prevent the entire virtual machine from blocking during file or network operations. There are four different
implementations of AsyncIO with different characteristics.

3.9 I/O Scheduling and the AsyncIO Framework
In a user-level threaded system like Ovm, blocking I/O calls stall the whole virtual ma-
chine. To get around this problem Ovm has a POSIX I/O emulator which schedules I/O
operations inside the VM. Included in the Ovm is the AsyncIO framework, which provides
asynchronous I/O scheduling primitives that are used to emulate ordinary I/O calls. This
section discusses the design and implementation of the AsyncIO component of Ovm.

There are four implementations of AsyncIO as shown in Fig. 21. The most trivial is the
stalling implementation, in which asynchronous calls are blocking. This implementation
is only provided as a fall-back, or for cases where the resource being used is known not
to block for long (such as a file descriptor that refers to a RAM disk). The polling imple-
mentation is non-blocking and attempts periodically to perform an I/O request by having
a timer interrupt invoke the ready() methods of all pending operations. The last two im-
plementations use the operating system’s I/O notification mechanisms, namely SIGIO and
select.

Two more implementations of AsyncIO are planned. One will use a pool of native
threads, running outside of the virtual machine’s direct control, to service I/O requests.
Each request will be handed to one of those threads and would be executed with native
blocking I/O calls. A second implementation will use the operating system’s asynchronous
I/O API. This approach is more involved as the mapping of the semantics of Ovm Async-
IO to the operating system’s API may be subtle. We are investigating using Kernel Asyn-
chronous I/O on Linux as well as Win32’s asynchronous I/O primitives for an eventual
Win32 port.

As mentioned above scheduling of I/O operations is controlled by the AsyncIO frame-
work. Clients, such as the POSIX emulator, are restricted to asynchronous operations.
Upon reception of an I/O request, the AsyncIO framework arranges for the operation
to take place at some point in the future with callbacks being used to notify the client
when the operation has made progress. Fig. 22 illustrates the components of a prototypical
asynchronous call. Such calls typically involve instances of five classes, IODescriptor,
AsyncMemoryCallback (if memory buffers are used), AsyncCallback , AsyncFinal-
izer , and AsyncHandle , which are described next.

3.9.1 IODescriptor. An IODescriptor is analogous to a POSIX file descriptor. It con-
tains both asynchronous and immediate non-blocking methods. For example, write comes
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AsyncHandle h = descriptor.write( buffer, nBytes, callback);

AsyncHandle

boolean canCancelQuickly()
void cancel(IOExcetion error)

AsyncMemoryCallback

VM_Address getBuffer(int nBytes, boolean keepLong)
void doneBuffer(VM_Address buf, int nBytes)

IODescriptor

boolean isOpen()
IODescriptor dup()
void close()
void cancel(IOException error)

RWIODescriptor

AsyncHandle read(AsyncMemoryCallback, int, AsyncCallback)
int tryReadNow(VM_Address, int)
AsyncHandle write(AsyncMemoryCallback, int, AsyncCallback)
int tryWriteNow(VM_Address, int)

AsyncCallback

void ready(AsyncFinalizer finalizer)

AsyncFinalizer

boolean finish()
IOException getError()

RWIODescriptor.WriteFinalizer

int getNumBytes()

Fig. 22. Anatomy of a write operation in Ovm’s AsyncIO framework.

in two flavors: asynchronous, write(), and immediate, tryWriteNow(). The latter per-
forms the operation immediately or, if it can’t complete right away, returns an error code.
write() takes three arguments: a buffer, the number of bytes to output, and a callback.
Notice that the buffer passed to write() is of type AsyncMemoryCallback , which al-
lows the client of the call and the AsyncIO implementation to negotiate the best way of
doing buffer management in a garbage collected and scope-aware environment.

3.9.2 AsyncMemoryCallback. Ovm supports multiple garbage collectors with different
characteristics. Most relevant to this discussion is the ability to pin objects. Pinning an
object prevents the collector from moving it until it is unpinned. If the implementation
of an asynchronous operation, such as write() needs to pass a pointer to code outside
of the virtual machine’s control while continuing to execute Java code, that pointer must
be pinned to prevent the GC from moving the object while it is being used by the native
operation. Some Ovm collectors support efficient pinning, while others don’t. Addition-
ally, some pointers (such as those allocated using java.nio.ByteBuffer, or any objects
allocated in a scope) do not need to be pinned. Thus, we would like to be able to prevent
pinning from taking place if it is unnecessary or inefficient. The AsyncMemoryCallback
interface accomplishes this goal by having AsyncIO inform the client whether the buffer
will need to be pinned for long (see the keepLong argument to getBuffer()). This al-
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There is a small but growing body of work on measuring performance characteristics of
Real-time Java [Higuera-Toledano and Issarny 2002; Corsaro and Schmidt 2002a; 2002b;
Niessner and Benowitz 2003; Bollella et al. 2003]. Unfortunately comparing different
implementations is difficult due to the proprietary nature of many systems. We only have
copies of jRate and jTime at our disposal as of this writing.

4.1 Throughput Benchmarks.
We evaluate the raw performance of Ovm on the SpecJVM98 benchmark suite and com-
pare with the Timesys jTime RTSJVM 1.0 (compiled), Hotspot 1.5 and GCJ 4.0.2. jTime,
Ovm and GCJ are ahead-of-time compiled, Hotspot is using just-in-time compilation. The
goal of this experiment is to provide a performance baseline. We evaluate two Ovm con-
figuration: the plain Java configuration and the RTSJ configuration which includes scoped
memory access checks. jTime, likewise, has read/write barriers turned on.
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Fig. 26. SpecJVM98. (normalized wrt. Ovm) “Ovm” is the Java configuration without scope checks. RTSJ-Ovm
outperforms the jTime RTSJVM. Ovm outperforms, on average, GCJ and is competitive with Hotspot.

The results, given in Fig. 26 show that performances of Ovm and GCJ are close. Typi-
cally, Ovm is slightly faster with the exception of mpegaudio where the slowdown is due
in part to our treatment of floating point numbers, this will be addressed in forthcoming
releases. GCJ did not execute jack successfully, and jTime could not run jess, db, javac and
mpegaudio. The figure also illustrates the costs of RTSJ barriers (up to 50%). SpecJVM is
by no means representative of a real-time application, but it gives a worst case estimate of
the cost of memory access checks.
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Fig. 27. Boeing RTSJ Latency benchmarks. Comparing Ovm with jTime. (in microseconds on a 1.6GHz AMD.)

scheduled, since they are blocked by mid-priority thread. We measure boost/unboost times.
Overall the Ovm latencies are in line with those observed in the jTime VM running

on Timesys Linux. Preemption latency is much better in Ovm as context switches are
performed within the VM and are lightweight while jTime must call into the OS.

4.4 Latency and Throughput Impact of Poll-checks.
Compiler inserted poll-checks are essential to Ovm’s scheduling infrastructure as they are
the only points where a thread can be preempted. Polling has the advantage of simplify-
ing the implementation of synchronization primitives. The downsides are (i) performance
overheads, both from the time spent executing the poll-check and from compiler opti-
mizations impeded by their presence, and (ii) potential increases in preemption latency.
Decreasing the frequency of poll-checks means that there will be longer segments of code
with interrupts deferred.

Fig. 28 gives the distribution of interrupt-to-check latencies for the PRiSMj 100X bench-
mark. We record the time difference between each event occurring outside of an atomic
region –where polling is turned off– and the time of the next poll-check. The maximum
latency is consistently six microseconds, other benchmarks exhibit similar behavior. The
current implementation of polling does not have an adverse effect on preemption latency.

To estimate the impact of poll-checks on throughput, we run Ovm on SpecJVM98
benchmark suite with and without poll-checks. See Fig. 29 for percent overheads mea-
sured for poll-checks in the Spec benchmarks. The overheads were computed based on the
median of 20 runs. All benchmarks exhibit under 3% overhead.

4.5 Effectiveness of Optimizations.
When building an Ovm image for an embedded system, we require developers to provide
all Java sources in advance as well as a list of all reflective methods that may be invoked.
This information is used to by the optimizing compiler to improve code quality. We give the
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Fig. 28. Distribution of poll-check latencies for the PRiSMj 100X scenario. Poll-check latency is the time
between an interrupt and a poll-check that services that interrupt. Worst case observed latency is 6 microseconds.
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Fig. 29. Percent overhead of poll-checks in SpecJVM98 benchmarks. In this graph, 0% overhead indicates that
enabling polling did not slow down the benchmark. Overhead is under 3%.

example of two applications, PRiSMj and RT-Zen (both are described later). Fig. 30 gives
the size of all components that can potentially go into an image: the application source
code, the JDK classes, the source code of the virtual machine and the implementation of
the RTSJ.

LOC Classes Data Code
Boeing PRiSMj 108’004 393 22’944 KB 11’396 KB
UCI RT-Zen 202’820 2447 26’847 KB 12’331 KB
GNU classpath 479’720 1974 – –
Ovm framework 219’889 2618 – –
RTSJ libraries 28’140 268 – –

Fig. 30. Footprint. Lines of code computed overall all Java sources files (w. comments). Data/Code
measure the executable Ovm image for two complete application (PRiSMj and Zen) on a PPC.
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The compiler performs a Reaching Types Analysis to discover the call graph of the
application and in the process prune dead methods and dead classes. The result are shown
in Fig. 31. The number of classes loaded refers to the classes that are inspected by the
compiler (the majority of classes are never referenced by the application). The number of
classes used is the number of classes that are determined to be live, i.e. may be accessed
at runtime. The number of methods defined is the sum of all methods of live classes. The
number of method used is the subset of those methods which may be invoked. Methods
that are not used need not be compiled.

classes methods call casts
loaded / used defined / used sites (% devirt) (% removed)

RTZEN 3266 / 941 20608 / 9408 67514 (89.7%) 5519 (37.7%)
PRiSMj 3446 / 953 13473 / 6616 46564 (89.8%) 73408 (96.9%)

Fig. 31. Impact of compiler optimizations.

Finally, Fig. 31 measures the opportunities for devirtualization and type casts removal.
In Java, every method is virtual by default, we show that in the two applications at hand
90% of call sites can be devirtualized. Type casts (e.g. instance of) are frequent opera-
tion in Java. The compiler is able to determine that a large portion of them are superfluous
and can be optimized away.

4.6 Application-level Benchmarking.
RT-Zen is a freely available, open-source middleware component developed at UC Irvine
and written to the RTSJ API’s. For this experiment, we use an application which imple-
ments a server for a distributed multi-player action game. The application allows players
to register with the server, update location information, and find the position of all of the
other players in the game. RT-Zen has a pool of worker threads that it uses to serve client
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Figure 6: RT-Zen Results. Comparing the response time for a game server running on top of a
Real-time Java CORBA implementation. There are two thread groups (low and high) handling 300
requests each. The y-axis indicates the time taken by the application code to process the request.
Lower is better.

RTSJ also poses some unusual challenges for the garbage collector. During GC, the bootimage
and scoped memory must be walked to find and update pointers into the heap. But, no-heap
realtime threads may mutate these memory areas while the GC runs. In the worst case, a no-heap
thread may overwrite a pointer into the heap with a pointer into scoped memory. Ovm accounts for
this possibility by updating pointers from the bootimage and scope with a compare and exchange
instruction. The result of the compare and exchange is ignored. If the update failed, at worst, the
garbage collector copied a free object into to-space.

3.5 Benchmarking and Measurements

RT-Zen is a freely available, open-source, middleware component developed at UC Irvine and
written using the Real-time Specification for Java. For this experiment, we use an application
which implements a server for a distributed multi-player action game. The application allows
players to register with the server, update location information, and find the position of all of the
other players in the game. RT-Zen has a pool of worker threads that it uses to serve client requests.
In our experiment, a worker thread has one of two priorities: high or low priority.

We have used Ovm to prototype JVM extensions such as Preemptible Atomic Regions. Pre-
emptible Atomic Regions (PARs) are alternative to priority inheritence: a thread is optimistically
allowed to enter a PAR, but a thread executing within a PAR will be rolled back to the start of
the region if a higher-priority thread becomes runnable. Code within a PAR may alter the heap
in arbitrary ways and appears to execute atomically. The PAR-enabled Ovm logs each write that
executes within an atomic region. We implement this logging using Ovm’s bytecode rewriting and
static analysis framework. We implement logging through program specialization: code that exe-
cutes within an atomic region performs logging unconditionally, while code that executes outside an
atomic region pays no overhead for logging. Because Ovm specializes code based on the program’s
call graph, specialization does not double code size.

16

Fig. 32. RT-Zen Results. Comparing the response time for an application running on top of a RTSJ CORBA
ORB. Two thread groups (low and high) handle 300 requests each. The y-axis indicates the time to process a
request. (milliseconds)
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support real-time. At the simplest level this often means that they don’t have sufficiently
predictable performance characteristics to be used by real-time, especially hard real-time,
threads. An additional failing, however, is that many classes will cause store check fail-
ures if instances of those classes are used from scoped memory. There are two common
programming techniques that typically result in these failures: lazy initialization and dy-
namic data structures. Lazy initialization delays the creation of an object until it is actually
needed. For example, if you create a HashMap you can ask it for a set that allows access
to all the keys or values in the map. This set is typically a view into the underlying map
and is only created when asked for. But, when it is created the reference is stored so that
later requests for the view simply return the same object and don’t create another one. If
the original map is created in heap or immortal memory, and the set is first asked for when
executing within scoped memory, then the set will be created in scoped memory. The at-
tempt to store a reference to the scope allocated set into the heap or immortal allocated
map, will then fail. Dynamic data structures grow (and shrink) as needed based on their
usage. If a linked list allocates a node object for each entry added to the list, then adding
to an immortal allocated list from scope memory will require linking an immortal node
to a scoped node. This is not permitted so the attempt will fail. The implementation of a
scope-aware Vector.ensureCapacity() method is shown in Fig. 33.

Vector::
void ensureCapacity(int cap){

...
Object[] arr=(Object[]) thisArea.newArray(Object.class, cap);
System.arraycopy(elementData,0,arr,0,elementCount);
elementData=arr;

}

Fig. 33. Scope-aware libraries. Growing a generic data structure must be performed in the original allocation
context of the object if we want to avoid memory access violations.

We must either accept these limitations and work within them in our applications, or else
rewrite libraries to ensure they always change to an allocation context that is compatible
with the main object. Such changes however are detrimental to the performance of non-
real-time code that also uses the libraries; and represent significant development effort.
A third option may be to define a real-time library that contains a subset of the general
library classes, written to be predictable, scope-aware, and perhaps even asynchronously
interruptible.

6. THE PCES EXPERIMENTS
In the design of the test experiments, both small scale prototypes and full-scale prototypes
were considered. Small-scale prototypes provide an early indication of the predicted be-
havior of a full-scale system. Unfortunately, costly problems sometimes occur when these
prototypes are extrapolated to large-scale systems. Potential problems include unexpected
increases of execution times and memory utilization. On the other hand, full-scale systems
can require a significant amount of manpower to develop.
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Fig. 35. ScanEagle Flight Product Scenario RTSJ Architecture.

6.1 Experiments

Experiments were run on flight hardware used on the ScanEagle UAV: an Embedded Planet
PowerPC 8260 processor running at 300MHz with 256Mb SDRAM and 32 Mb FLASH.
The operating system is Embedded Linux. An illustration of the 1X modal scenario is
shown in Fig. 36. The test results indicated low jitter in the order of 10’s of microsec-
onds and provided the expected behavior as demonstrated previously with the reference
implementation on the desktop.

The Purdue University Ovm implementation was the first Real-Time Java application to
qualify on the flight hardware. Other implementations considered included jTime, which
did not support PPC, and jRate and Flex, but these could not be made ready in time. The
100X scenario test was used for the formal testing. The success criteria was that the vari-
ability in the initiation of periodic processing frames shall not exceed 1% of the associated
period. For example, during the 50 millisecond period, the maximum allowable jitter is
500 microseconds. The jitter measured at approximately 100 microseconds during the 50
millisecond period. This was well within the 1% success criteria. The results are illustrated
in Fig. 36.

Similar experiments, but for a C++ implementation of the PCES benchmarks, were re-
ported in [Sharp et al. 2003]. At the time the performance of JTime was deemed acceptable
but shown to be slower than the equivalent C++ program. The results presented here show
that Ovm with real-time Java is faster than the C++ system. The readers should note that
we were not able to obtain the C++ software to re-run the experiments on identical hard-
ware configuration. (Ovm results were run on a slower PPC board, while the C++ program
ran on 1.2GHz Pentium 4.)
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Fig. 36. Response times of 100 threads split in three groups (high, medium, low) on a
modal workload. The x-axis shows the number of data frames received by the UAV control,
the y-axis indicates the time taken by by a thread to process the frame in milliseconds. (on
flight hardware)

7. SCANEAGLE FLIGHT DEMONSTRATION
Ovm was used as the Java Virtual Machine for the Real-Time Java Open Experiment Plat-
form in demonstrations at Chicago in June 2004; St. Louis, for a ground demonstration in
December 2004; and White Sands Missile Range, NM, for the capstone demonstration in
April 2005.

7.1 ScanEagle Flight Product Scenario
The flight product scenario was added to the OEP in order to support the ScanEagle flight
demonstration using a real avionics asset. The ScanEagle using the Ovm was designated
as the Reconnaissance UAV (RUAV). This ScanEagle’s main function was surveillance of
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public int write(
int fd, Oop buf, int byteOffset, int byteCount, boolean block) {

if (byteCount == 0) return 0;
if (!verifyPointer(buf, byteOffset, byteCount)) {

setErrno(NativeConstants.EFAULT);
return -1;

}
IODescriptor io = getIOD(fd);
if (io == null) {

setErrno(NativeConstants.EBADF);
return -1;

}
if (!(io instanceof RWIODescriptor)) {

setErrno(NativeConstants.EINVAL);
return -1;

}
try {

int result = ((RWIODescriptor)io).tryWriteNow(
getPointer(buf, byteOffset, byteCount),
byteCount);

if (result >= 0) return result;
} catch (IOException e) {

setErrno(e);
return -1;

}
if (!block) {

setErrno(NativeConstants.EWOULDBLOCK);
return -1;

}
Object r1 = MemoryPolicy.the().enterScratchPadArea();
try {

BlockingCallback bc = new BlockingCallback(bm,tm);
((RWIODescriptor)io).write(

new ForWriteMemoryCallback(buf,byteOffset,byteCount),
byteCount, bc);

bc.waitOnDone();
IOException error = bc.getFinalizer().getError();
if (error != null) {

setErrno(error);
return -1;

}
return ((RWIODescriptor.WriteFinalizer)bc.getFinalizer()).getNumBytes();

} finally {
MemoryPolicy.the().leave(r1);

}
}

Fig. 1. Code for implementing write() in the Ovm POSIX I/O emulator.

(a
) 

N
on

-b
lo

ck
in

g
fa

st
 p

at
h

(b
) 

Sl
ow

 p
at

h 
th

at
 u

se
s 

as
yn

ch
ro

no
us

 I/
O

Ovm: a Real-time Java Virtual Machine for Avionics
     The ScanEagle unmanned autonomous vehicle (UAV) with 
Boeing PRiSMj software and the Ovm Real-Time Java Virtual 
Machine.  Having flown successfully and passed Boeing's internal 
qualification tests, the ScanEagle demonstrated the feasibility of 
using Real-Time Java in general, and the Ovm in particular in 
avionics applications.  It was the first Real-Time Java system to do 
so.  This poster describes the design of the Ovm's real-time 
components, with special focus on scheduling and scoped 
memory support.  We also show the performance of the Ovm 
using a variety of benchmarks.

     Basic Ovm architecture.  The VM is split into 
the executive domain kernel, and the user 
domain, which contains the application and its 
libraries.  Almost all of the Ovm is written in Java.  
All non-trivial Java bytecodes are converted to 
calls to core services access methods, which are 
implemented in the executive domain.  The 
executive domain is also responsible for 
implementing scheduling, memory management, 
reflection, and I/O.

—for example, the throws clause above is used to specify pragmas that alter the execution of this method.  Further, the 
VM_Address class is ephemeral—it does not correspond to an object at run time; instead calls to it are translated into pointer 
manipulation operations.

     All Java code in Ovm is executed via the J2c execution 
engine, which converts Java code to C++.  In this code 
example, we see the getMem method seen previously 
converted to C++.  We compile all Java methods to module-
local C++ functions, allowing the C++ compiler to perform 
inlining.  Most method calls are devirtualized—for example 
Mem.the().zero() is translated into the direct call 
PollingAware.zero().  Also, every VM_Address turns into an 
integer.

     Scheduling of threads is done without the help of the 
operating system.  When code is compiled to Java, we insert 
pollchecks, which rapidly check if a scheduling decision needs 
to be made.  Pollchecks are inserted at back branches (loops) 
and optionally at method entry, insuring the the number of 
instructions between pollchecks is bounded.  When a 
pollcheck fires, the event handling and thread management 
framework decides which thread to run next.

     Pollchecks are fast to 
execute, and fast to disable.  A 
pollcheck simultaneously 
checks for two flags: signaled 
and enabled.  The signaled flag 
is set asynchronously by 
interrupt handlers written in C 
that detect conditions that 
would require rescheduling 
(such as a timer interrupt).  The 
enabled flag specifies if pollchecks are enabled (clearing this flag 
enables atomic execution).  The logic is set up to allow the fastest 
possible pollcheck without having to use atomic instructions.

     Operations that other VMs implement in native 
code are implemented in Java in the Ovm.  This 
figure shows the code for allocation.  Note that the 
code is syntactically Java, and gets compiled to Java 
bytecodes using an ordinary Java compiler.
However, the semantics of the code differ from Java

     One of the concerns of using a pollcheck scheme for 
scheduling is the time between pollcheck executions.  If this 
latency is too great, scheduling decisions may come too 
infrequently.  This histogram shows the pollcheck latency in 
microseconds.  The worst case is about 6 microseconds.

     Throughput is 
also a concern.  
How much slower is 
Ovm code with 
pollchecks included?  
This figure seeks to 
answer this question.  
We compare the 
execution time of 
various SpecJVM98 
benchmarks 
with and without pollchecks.  Notice that the worst-case 
overhead is around 2.5%.  We see that although pollchecks 
require code to be added to every method, it does not 
significantly impact performance.

     Real-Time Java relies on the 
scoped memory API to guarantee that 
high-priority tasks can execute 
without garbage collector 
interference.  The 
javax.realtime.MemoryArea class 
serves as the parent class of the 
scoped memory area class hierarchy.  
Since the Ovm is written in Java, all 
virtual machine functions also need to 
be written in such a way as to avoid 
collector interference.  We do this by providing an internal memory 
management API that contains a superset of scoped memory features.

     One of the features that the Ovm 
memory management API adds is the scratch 
pad, a memory area that provides 
functionality similar to alloca in C.  This is a 
recursive area—exiting it reclaims only those 
objects that were allocated since the most 
recent entry.  This allows us to allocate 
temporary objects without having to find the 
appropriate scope.  In this code example, 
we see a method that implements reflective 
calls in the executive domain.  Because it 

needs to allocate the temporary InvocationMessage object, we enter into the scratch pad using our 
MemoryPolicy and MemoryManager APIs.  If we had used the real-time Java scoped memory API, the 
code would have to contain complicated logic for finding or allocating the appropriate scope—something 
that is never necessary in Ovm.

     User domain code also requires 
special care in the presence of 
scoped memory.  Here, we see a 
modified java.util.Vector method.  
This method has been changed so
that calls from outside the vector object's parent scope do not cause memory errors.  In this example, 
thisArea is the MemoryArea of the receiver.  The newArray() method is used to reflectively allocate the 
new backing store of the Vector.

     Real-time Java guarantees that 
high priority threads do not have to 
deal with garbage collector 
interruptions.  This guarantee is

enforced by a read barrier that the compiler inserts before every heap read operation.  Its job is to 
verify that the heap is not accessed by threads that may preempt the collector.  The code for the 
Ovm read barrier is shown in this figure.  Our read barrier is fast—we simply perform arithmetic on 
the target object's address to insure that it does not fall outside of the heap.

     Writes to memory also 
need to be checked in real-
time Java, to insure that longer-
lived objects never point at 
shorter-lived ones.  Object 
lifetime is determined by the object's scoped memory area.  A write barrier is used to perform this 
check.  The Ovm store check fast path is shown in this figure.  The fast path simply verifies that the 
objects are in the same page.

     The slow path of the store 
check is shown here. In Ovm, 
store checks are always O(1) in 
time and space.  For a detailed 
description of the algorithm see 
Palacz and Vitek's Subtype tests 
in real time.

     In Ovm, finding the 
memory area that owns an 
object is fast and does not 
require an extra header field 
in the object.  We simply 
maintain a page-to-memory-
area mapping (see the
scopeOwner array).  To find the memory area of an object, we first round down the object's base 
address to the base of the page, and then look up the memory area associated with the page.  The 
process is fast and reduces memory usage by eliminating the need for an extra field in the object 
header.

     Ovm manages its own 
scheduling.  This means that 
the I/O scheduling machinery 
found in the operating system 
kernel must be duplicated in 
the virtual machine, to insure 
that the whole VM does not 
block on a single thread's I/O 
operation.  In this figure we 
see an illustration of the Ovm 
I/O stack.  At the top is 
GNU CLASSPATH, which is our implementation of the Java class libraries.  CLASSPATH expects to be 
able to use a POSIX I/O interface—so we provide it, using our POSIX I/O emulator.  The scheduling is 
managed by the Ovm Async I/O Framework, seen in black.  The POSIX I/O emulator, which provides 
blocking I/O operations, is implemented in terms of the asynchronous operations provided by Ovm 
Async I/O.  In turn, the Async I/O framework has multiple implementations, ranging from the 
conservative Polling implementation (intended to work on any device) to the high-throughput select 
implementation.  SIGIO is the implementation we use most frequently for real-time application.  The the 
following figures we describe the Async I/O framework in detail.

     Anatomy of an Async I/O call.  We 
use the write operation as a running 
example.   Operations are meant to 
look like their POSIX counterparts 
with the exception that they are 
designed to return immediately, rather 
than upon completion of the 
operation; and in that instead of an
integer file descriptor, we have 
an IODescriptor object.  Being 
asynchronous, every operation 
requires a callback that's used 
for notifying the client when the 
operation completes.

insure optimal interaction with the garbage collector in the case that the

     POSIX I/O 
implementation 
of the write 
operation.  We 
proceed much as 
a typical 
operating system 
would: after 
performing sanity 
checks, in (a) we 
attempt a non-
blocking fast 
path.  If the 
operation is 
configured to be 
blocking (see the 
block parameter), 
the code drops to 
the slow path in 
(b), where the 
Async I/O write 
operation is used 
to emulate POSIX 
blocking 
semantics.  Other 
I/O operations 
are implemented 
in a similar 
fashion.

     Ovm performance compared to a number of other VMs, including those 
optimized for throughput (like HotSpot) and for real-time (like jTime).  Lower 
numbers are better.  Note that we consider both real-time and throughput 
configurations of the Ovm.  GCJ and jTime were unable to complete a number 
of benchmarks.  In all cases where jTime completed the benchmark, it ran for 
much longer than Ovm.  Ovm was the fastest RTJVM that we were able to test, 
and its performance tended to be in the same ballpark as HotSpot.

     Real-time performance microbenchmarks.  Lower 
numbers are better.  In all benchmarks except for Period, 
Ovm is at least as good as jTime.  In the Inherit 
benchmark, which measures the performance of priority 
inheritance locks, jTime was unable to complete the test.

     Size of the Ovm, associated libraries, and two applications that we use.  
The Ovm itself consists of just over 200,000 lines of code.  The 
implementation of the RTSJ itself is quite small, but don't be fooled—the RTSJ 
libraries make heavy use of Ovm framework functionality that would not be 
there if we did not support the RTSJ.  The GNU CLASSPATH library is 
considerably larger than the Ovm.  PRiSMj, the ScanEagle application, and 
the UCI RT-Zen ORB are two applications that we run.  Both are over 
100,000 lines of code.

     Predictability of RT-Zen running on the Ovm.  We 
have two thread groups, low-priority and high-priority, 
handling 300 requests each.  Of note is that we do not 
see any major outliers in request processing time.

     The Ovm implementation of PRiSMj was the first application 
to qualify to fly on the ScanEagle UAV. Performance of PRiSMj 
on Ovm is shown in this figure.  Response times of 100 threads 
split in three groups (high, medium, low) on a modal workload 
are shown. The x-axis shows the number of data frames 
received by the UAV control, the y-axis indicates the time taken 
by by a thread to process the frame in milliseconds.  Our jitter is 
well within the 1% jitter target.

Research by Jason Baker, Antonio Cunei, Chapman Flack, 
Filip Pizlo and Jan Vitek of Purdue University;
Austin Armbuster and Edward Pla of the Boeing Company;
David Holmes of DLTeCH; and
Marek Prochazka of SciSys.

    The flight product 
scenario provides 
autonomous auto-routing 
and health monitoring by 
communicating with 
the flight controls card,  
computing navigational 
cues for the flight controls 
based on threats and no 
fly zone data from the 
ground station, and 
computing performance 
monitoring information.

 Overview of the PRiSMj application. Synchronized communication 
with the flight controls is a mission critical function and executed at a 

Additionally, a handle is returned that 
allows the client to cancel the operation 
after it is initiated.  Perhaps most 
strikingly, the async operations do not 
accept regular memory buffers (in the 
form of a pointer, or an array object), but 
instead require a special callback, to

operation is implemented by a process that is not under the VM's direct control.


