Ovm: a Real-time Java Virtual Machine for Avionics

» The ScanEagle unmanned autonomous vehicle (UAV) with
Boeing PRiSMj software and the Ovm Real-Time Java Virtual
Machine. Having flown successfully and passed Boeing's internal
qualification tests, the ScanEagle demonstrated the feasibility of

y—

using Real-Time Java in general, and the Ovm in particular in interference. The
avionics applications. It was the first Real-Time Java system to do javax.realtime.MemoryArea class
so. This poster describes the design of the Ovm's real-time serves as the parent class of the \

components, with special focus on scheduling and scoped
memory support. We also show the performance of the Ovm
using a variety of benchmarks.

Since t
virtual

User domain

» Real-Time Java relies on the
scoped memory API to guarantee that {
high-priority tasks can execute
without garbage collector

scoped memory area class hierarchy.

Java Application

javax.realtime.MemoryArea][Other VM Services

VM_Area & MemoryManager API

he Ovm is written in Java, all

SplitRegionManager

machine functions also need to

be written in such a way as to avoid
collector interference. We do this by providing an internal memory
management API that contains a superset of scoped memory features.

O User domain O Executive domain

» Basic Ovm architecture. The VM is split into
the executive domain kernel, and the user (Java Application) public ValueUnion call(Oop recv) { < One of the features that the Ovm
domain, which contains the application and its [GNU CLASSPATH] ‘o’&‘:ziar?riaM;mfir;gzil’Ti;agiz(?h;éeigzgizigzzi:;)() . memory management APl adds is the scratch
libraries. Almost all of the Ovm is written in Java. | g try ' pad, a memory area that provides
All non-trivial Java bytecodes are converted to <é(§ [Library Glue] InvocationMessage msg = makeMessage () ; funCtlonahty similar to alloca in C. This is a
calls to core services access methods, which are 2 [T] ZM_Afea r2 = MemoryManager.the () .setCurrentArea(area); | recursive area—exiting it reclaims only those
. . . . o r . .
implemented in the executive domain. The = = y b we o fE. Al (e - objects that were allocated since the most
executive domain is also responsible for S == ret .rethrowWildeard () ; recent entry. Thls allpws us to .allocat.e
implementing scheduling, memory management, | 8 <:| T | T] return ret.getReturnvValue(); temporary objects without having to find the
reflection, and I/O UDLAE 2pats omain Reflection } finally { MemoryManager.the () .setCurrentArea(r2); } appropriate scope. In this code example
!) downcalls from bytecode } finally { MemoryPolicy.the().leave(rl); } . !
<::| : we see a method that implements reflective
Kernel : . . : :
|:> Ovm Kerne executive methods calls in the executive domain. Because it
el

Cross-domain calls.

Executive domain

VM_Address getMem(int size)
throws PragmaNoPollcheck, PragmaNoBarriers ({ t
VM_Address ret = base () .add(offset);
offset += size;
Mem.the () .zero (ret.add (ALIGN), offset == rsize?size-ALIGN:size);
return ret;

» Operations that other VMs implement in native
code are implemented in Java in the Ovm. This
figure shows the code for allocation. Note that the
code is syntactically Java, and gets compiled to Java
bytecodes using an ordinary Java compiler.
However, the semantics of the code differ from Java
—for example, the throws clause above is used to specify pragmas that alter the execution of this method. Further, the
VM_Address class is ephemeral—it does not correspond to an object at run time; instead calls to it are translated into pointer
manipulation operations.

hat is never necessary in Ovm.

» User domain code also requires
special care in the presence of
scoped memory. Here, we see a
modified java.util.Vector method.
This method has been changed so

needs to allocate the temporary InvocationMessage object, we enter into the scratch pad using our
MemoryPolicy and MemoryManager APIs. If we had used the real-time Java scoped memory API, the
code would have to contain complicated logic for finding or allocating the appropriate scope—something

Vector::
void ensureCapacity (int cap) {

Object[] arr=(Object[]) thisArea.newArray (Object.class, cap);
System.arraycopy (elementData, 0,arr, 0,elementCount) ;
elementData=arr;

}

that calls from outside the vector object's parent scope do not cause memory errors. In this example,
thisArea is the MemoryArea of the receiver. The newArray() method is used to reflectively allocate the

new backing store of the Vector.

void readBarrier (VM_Address src)
PragmaNoBarriers,

throws Pragmalnline,
if (!doLoadCheck) return;
if

(src.diff (heapBase) .uLessThan (heapSize))

< Real-time Java guarantees that
high priority threads do not have to
deal with garbage collector
interruptions. This guarantee is

PragmaNoPollcheck {

fail();

static VM_Address* getMem(TransientAreax area, jint size) { < All Java code in Ovm is executed via the J2c execution
(RS S B ERESED B GRS engine, which converts Java code to C++. In this code
CERSTSOEESCE = el example, we see the getMem method seen previous|
jint s2 = sl + (&SplitRegionManager)->ALIGN; p 4 g . p usty
it 65 — (ares—Seffset — arca—swEeime)? converted to C++. We compile all Java methods to module-

(size- (¢SplitRegionManager)->ALIGN) : size; local C++ functions, allowing the C++ compiler to perform

PollingAware_zero (roots->values[57]), s2, s3); inlining. Most method calls are devirtualized—for example
return sl; . . .

} Mem.the().zero() is translated into the direct call
PollingAware.zero(). Also, every VM_Address turns into an :
integer.

void someMethod () { void someMethod () {
POLLCHECK () ;
N N union {
while(...) { = while (...) { struct {
... volatile intl6_t notSignaled;
POLLCHECK () ; volatile intl6_t notEnabled;

» Pollchecks are fast to
execute, and fast to disable. A
pollcheck simultaneously
checks for two flags: signaled
and enabled. The signaled flag
is set asynchronously by
interrupt handlers written in C
that detect conditions that
would require rescheduling

}os;
volatile int32_t pollWord;
} pollUnion;

v Scheduling of threads is done without the help of the
operating system. When code is compiled to Java, we insert
pollchecks, which rapidly check if a scheduling decision needs
to be made. Pollchecks are inserted at back branches (loops)
and optionally at method entry, insuring the the number of

POLLCHECK:

if (pollUnion.pollWord == 0) {
pollUnion.s.notSignaled = 1;
pollUnion.s.notEnabled = 1;
handleEvents () ;

enforced by a read barrier that the compiler inserts before every heap read operation. lIts job is to
verify that the heap is not accessed by threads that may preempt the collector. The code for the

» Writes to memory also
need to be checked in real-
time Java, to insure that longer-
lived objects never point at
shorter-lived ones. Object

instructions between pollchecks is bounded. When a
pollcheck fires, the event handling and thread management
framework decides which thread to run next.

(such as a timer interrupt). The
enabled flag specifies if pollchecks are enabled (clearing this flag
enables atomic execution). The logic is set up to allow the fastest
possible pollcheck without having to use atomic instructions.

100

80

jack

» Throughput is
also a concern.
How much slower is
Ovm code with
pollchecks included?
This figure seeks to
answer this question.
We compare the
execution time of
various SpecJVM98

60 -
mtrt

Counts

40 mpegaudio

20 javac

db

10 15 20 25 30)
Pollcheck Latency in Microseconds jess

compress

1.5% 2.5% 3.5% 4.5%

0.5%

¥ One of the concerns of using a pollcheck scheme for 0.5%

objects are in the same page.

void storeCheckSlow (int sb, int tb)
PragmaNoBarriers,
VM_Word. fromInt (tb - scopeBaselIndex);

throws PragmaNoPollcheck,
VM_Word tidx =

Ovm read barrier is shown in this figure. Our read barrier is fast—we simply perform arithmetic on
the target object's address to insure that it does not fall outside of the heap.

void storeCheck (VM_Address src, int offset, VM_Address tgt)
throws PragmaNoPollcheck, PragmaNoBarriers, Pragmalnline {

int sb = src.asInt() >>> blockShift;
int tb = tgt.asInt () >>> blockShift;
if (sb != tb) storeCheckSlow(sb, tb);

lifetime is determined by the object's scoped memory area. A write barrier is used to perform this
check. The Ovm store check fast path is shown in this figure. The fast path simply verifies that the

< The slow path of the store
check is shown here. In Ovm,
store checks are always O(7) in

PargamNoInline {

if (!tidx.ulLessThan (scopeBlocks)) return; R .
Area ta = scopeOwner[tidx.asInt() 1; time and SpaCe- For a detalled
VM_Word sidx = VM_Word.fromInt (sb - scopeBaselndex) ; description of the algorithm see
if (!sidx.ulLessThan (scopeBlocks)) fail(); Palacz and Vitek's 5ubtype tests
Area sa = scopeOwner[sidx.asInt()]; . .

if (sa == ta) return; In rea/ time.

if ((ta.prange - sa.crange) & MASK) != RES) fail();

» In Ovm, finding the
memory area that owns an
object is fast and does not
require an extra header field

scheduling is the time between pollcheck executions. If this
latency is too great, scheduling decisions may come too
infrequently. This histogram shows the pollcheck latency in
microseconds. The worst case is about 6 microseconds.

benchmarks

with and without pollchecks. Notice that the worst-case
overhead is around 2.5%. We see that although pollchecks
require code to be added to every method, it does not
significantly impact performance.

in the object. We simply
maintain a page-to-memory-
area mapping (see the

}

VM_Area areaOf (Oop mem) {
VM_Word off = VM_Address.fromObject (mem) .diff (heapBase) ;

if (off.ulT(VM_Word.fromInt (heapSize))) return heapArea;

off = VM_Address.fromObject (mem) .diff (scopeBase) ;

if (!off.ulT (VM_Word.fromInt (scopeSize))) return immortalArea;
int idx = off.asInt () >>> blockShift;

return scopeOwner [idx];

scopeOwner array). To find the memory area of an object, we first round down the object's base
address to the base of the page, and then look up the memory area associated with the page. The
process is fast and reduces memory usage by eliminating the need for an extra field in the object

header.

» Ovm manages its own

CLASSPATH Library

scheduling. This means that 7

the 1/0 scheduling machinery

POSIX I/O Emulator

found in the operating system
kernel must be duplicated in
the virtual machine, to insure

Ovm Async 1/0 Framework

that the whole VM does not |
block on a single thread's I/O

SIGIO M Select][Polling M Stalling |

operation. In this figure we
see an illustration of the Ovm

Operating System

~

I/O stack. At the top is

GNU CLASSPATH, which is our implementation of the Java class libraries. CLASSPATH expects to be
able to use a POSIX I/O interface—so we provide it, using our POSIX I/O emulator. The scheduling is
managed by the Ovm Async I/O Framework, seen in black. The POSIX I/O emulator, which provides
blocking I/O operations, is implemented in terms of the asynchronous operations provided by Ovm
Async I/O. In turn, the Async I/O framework has multiple implementations, ranging from the
conservative Polling implementation (intended to work on any device) to the high-throughput select

implementation. SIGIO is the implementation we use most frequently for real-time application. The the

following figures we describe the Async I/O framework in detail.

» Anatomy of an Async I/O call. We

AsyncHandle

AsyncMemoryCallback

use the write operation as a running

boolean canCancelQuickly()
void cancel(IOExcetion error)

example. Operations are meant to

VM_Address getBuffer(int nBytes, boolean keepLong)
void doneBuffer(VM_Address buf, int nBytes)

look like their POSIX counterparts
with the exception that they are
designed to return immediately, rather
than upon completion of the
operation; and in that instead of an
integer file descriptor, we have

AsyncHandle h =

descriptor.write(buffer, nBytes, callback);

RWIODescriptor

AsyncCallback

an I0Descriptor object. Being

AsyncHandle read(AsyncMemoryCallback, int, AsyncCallback)
int tryReadNow(VM_Address, int)
AsyncHandle write(AsyncMemoryCallback, int, AsyncCallback)
int tryWriteNow(VMiAddress, int)

asynchronous, every operation
requires a callback that's used
for notifying the client when the
operation completes.
Additionally, a handle is returned that
allows the client to cancel the operation
after it is initiated. Perhaps most
strikingly, the async operations do not
accept regular memory buffers (in the
form of a pointer, or an array object), but
instead require a special callback, to
insure optimal interaction with the garbage collector in the case that the
operation is implemented by a process that is not under the VM's direct control.

10Descriptor

boolean isOpen()
I0Descriptor dup()

void close()

void cancel(IOException error)

public int write(

int fd, Oop buf, int byteOffset, int byteCount, boolean block) {

if (byteCount == 0) return O;

if (IverifyPointer(buf, byteOffset, byteCount)) {
setErrno(NativeConstants.EFAULT);
return -1;

}

IODescriptor io = getlOD(fd);

if (io == null) {
setErrno(NativeConstants.EBADF);
return -1;

}

if (!(io instanceof RWIODescriptor)) {
setErrno(NativeConstants.EINVAL);
return -1;

¥
try {
int result = ((RWIODescriptor)io).tryWriteNow(
getPointer(buf, byteOffset, byteCount),
byteCount);
if (result >= 0) return result;
} catch (IOException e) {
setErrno(e);
return -1;

(a) Non-blocking
fast path

}
if (!block) {
setErrno(NativeConstants. EWOULDBLOCK);
return -1;
}
Object r1 = MemoryPolicy.the().enterScratchPadArea();
try {
BlockingCallback bc = new BlockingCallback(bm,tm);
((RWIODescriptor)io).write(

§ new ForWriteMemoryCallback(buf,byteOffset,byteCount),
30 byteCount, bc);
2 bc.waitOnDone();
= 3 IOException error = bc.getFinalizer().getError();
é 5 if (error != null) {
> 5 setErrno(error);
g g\ return -1;
—~ ®
] return ((RWIODescriptor.WriteFinalizer)bc.getFinalizer()).getNumBytes();

} finally {

MemoryPolicy.the().leave(r1);
}
}

void ready(AsyncFinalizer finalizer)

AsyncFinalizer

boolean finish()
I0OException getError()

RWIODescriptor.WriteFinalizer

int getNumBytes()

< POSIX /O
implementation
of the write
operation. We
proceed much as
a typical
operating system
would: after
performing sanity
checks, in (a) we
attempt a non-
blocking fast
path. If the
operation is
configured to be
blocking (see the
block parameter),
the code drops to
the slow path in
(b), where the
Async I/O write
operation is used
to emulate POSIX
blocking
semantics. Other
I/O operations
are implemented
in a similar
fashion.

Time, relative to Ovm
=
o
L

2.0 >e

1.5

2.2

12.2 4.4

o
(9]
I

m Ovm 1.01

: RTSJ Ovm 1.01
i 1 [=mGCJ4.02

: m HotSpot1.5.0.06
#1jTime 1.0

o
L
jTime
® Ovm
o
o
’(,7 ~—
=2
>
[&]
c
o
S
o
[Te]
b4
! "L L]
o |® ¢ ¢
> X .
& 0 & > & &
g & 7 32 X g
« 4 & ° <

v Ovm performance compared to a number of other VMs, including those
optimized for throughput (like HotSpot) and for real-time (like jTime). Lower
numbers are better. Note that we consider both real-time and throughput
configurations of the Ovm. GCJ and jTime were unable to complete a number

¥ Real-time performance microbenchmarks. Lower
numbers are better. In all benchmarks except for Period,
Ovm is at least as good as jTime. In the Inherit
benchmark, which measures the performance of priority
inheritance locks, jTime was unable to complete the test.

of benchmarks. In all cases where jTime completed the benchmark, it ran for
much longer than Ovm. Ovm was the fastest RTJVM that we were able to test,
and its performance tended to be in the same ballpark as HotSpot.

| || LOC | Classes | Data | Code |
Boeing PRiSMj 108’004 393 | 22’944 KB 11’396 KB
UCI RT-Zen 202’820 2447 | 26’847 KB 12’331 KB
GNU classpath 479720 1974 - -
Ovm framework 219°889 2618 — —
RTS]J libraries 28’140 268 — —

v Size of the Ovm, associated libraries, and two applications that we use.

The Ovm itself consists of just over 200,000 lines of code. The

implementation of the RTSJ itself is quite small, but don't be fooled—the RTS)
libraries make heavy use of Ovm framework functionality that would not be

there if we did not support the RTS). The GNU CLASSPATH library is

considerably larger than the Ovm. PRiSMj, the ScanEagle application, and

the UCI RT-Zen ORB are two applications that we run. Both are over
100,000 lines of code.

Overview of the PRiSMj application. Synchronized communication
with the flight controls is a mission critical function and executed at a

Application
Layer

< periodic rate of
20Hz. Navigational

W&Wmﬂggpg | cue computation is
8. Pusk() 45, Push() T“ push() Computed ata
. Pus . 0
L pushy | 15890 0.Sot() periodic rate of 5Hz.
[14. push() The lowest priority is
[[| the computation of
| Rlosgenwol s Passive the performance data
tB. Push()
e f17. Push() [‘| 10. SetDatal() at THz.
Device 16. Push(
Ts Push() AND TW?:. SetData2()
’ Correlation - - -
Full Channel navigator: i? IZz;)T_'aC{lcal Steering
Events PushDataSource igh Priority
r 5 HZ: Steering Point
& [PUStiy Medium Priority
device1 : eviceZ : 1 device3 - eviced :
|:e\\lllice @;ﬁ&iglgﬂyw Device | Eevice | 1 Hz: Mode Change
- Low Priority

il

2. Push(\

Infrastructure
Layer

PushY)

Full Channel[
Events

frameController :
FrameController

—
4. Push()

Mission Control
Payload Card ScanEagle
Application Patform
Components

Frame Controller

PeriodicParameters

RelativeTime

Event Queues

NoHeapRealtimeThread

Event Channel

AsyncEvent

BoundAsyncEventHandle

Object Reference
Broker

ImmortalMemory

Navigation
Serial /0 Device
PassThrough

Real-time JAVA
Virtual Machine

Flight
Control
Card

< The flight product
scenario provides
autonomous auto-routing
and health monitoring by
communicating with

the flight controls card,
computing navigational
cues for the flight controls
based on threats and no
fly zone data from the
ground station, and
computing performance
monitoring information.

I
Threats, No Fly Zones |

Ground

L

Flight Data

Station

50 -

45

40

35

30

25

IO AN

101 121 141 161 181 201 221 241 261 281

Response time [ms]

Frames

¥ Predictability of RT-Zen running on the Ovm. We
have two thread groups, low-priority and high-priority,
handling 300 requests each. Of note is that we do not
see any major outliers in request processing time.

0.7
o —l_l_f__7_l__l_|_l__1__l_l_l_l_l_
05 Infrastructure
0.4
03 [20Hz|
0.2 SHz
RS T W g T R L L I L I T
-IHz
0 ; ; ; ; : ; ; ; ; ; ; ; ; ; ; ; ; : ;
| 21 41 61 81 101 121 141 16l 181 201 221 241 261 281 301 321 341 361 381

4 The Ovm implementation of PRiSMj was the first application
to qualify to fly on the ScanEagle UAV. Performance of PRiSM;j
on Ovm is shown in this figure. Response times of 100 threads
split in three groups (high, medium, low) on a modal workload
are shown. The x-axis shows the number of data frames
received by the UAV control, the y-axis indicates the time taken
by by a thread to process the frame in milliseconds. Our jitter is
well within the 1% jitter target.

Research by Jason Baker, Antonio Cunei, Chapman Flack,
Filip Pizlo and Jan Vitek of Purdue University;

Austin Armbuster and Edward Pla of the Boeing Company;
David Holmes of DLTeCH; and

Marek Prochazka of SciSys.

VY (§°

