
Real-Time Java Scoped Memory: Design Patterns and Semantics

F. Pizlo J. M. Fox D. Holmes† J. Vitek
Purdue University, †DLTeCH

Abstract

One of the most powerful features of the Real-Time Spec-
ification for Java (RTSJ) is the new memory management
model based on scoped memory areas. This model allows
programmers to ensure timely reclamation of memory and
predictable performance, at the cost of an unfamiliar pro-
gramming model. We report on experience using and imple-
menting scoped memory areas. Our contribution is twofold:
(i) we give an informal introduction to the semantics of the
scope management rules of the RTSJ, (ii) we present a num-
ber of design patterns for effectively using the scoped mem-
ory area API.

1. Introduction

The Real-Time Specification for Java (RTSJ) [2] holds pro-
mise to play a key role in the construction of large scale
real-time systems in type-safe high-level programming lan-
guages. The benefits of Java in mission critical systems are
currently being evaluated in a number of companies and
labs such as Boeing [8] and JPL [7]. As of this writing a
high-quality commercial implementation of the specifica-
tion has been released by Timesys [5], and a number of
research projects are working on open source implemen-
tations as well as alternative proposals [1, 3, 6].While the
RTSJ API is rich in features, the one that is most likely to
affect how real-time Java programs are written is the RTSJ’s
new memory management model based on scoped memory
areas. This paper sets out to do the following:

• Introduce the semantics of scoped memory manage-
ment informally in sufficient details for non-experts to
appreciate some of the subtleties the model.

• Introduce design patterns and programming idioms
suited for constructing RTSJ programs.

These observations are based on our experience implement-
ing Ovm, a RTSJ-compliant virtual machine as well as writ-
ing RTSJ programs and benchmarks.
An important concern when using a language such as

Java to implement a real-time system is the interaction of
automatic memory management with real-time tasks. While

garbage collection (GC) frees the programmer from the bur-
den of tracking memory usage, it introduces uncertainty be-
cause the exact point in time at which a collection occurs is
unknown, moreover none of the traditional GC algorithms
provide accurate time bounds; and real-time GC algorithm
still incurs running time and memory overheads that are un-
acceptable for some resource constrained systems. The ap-
proach advocated by the RTSJ is conceptually simple: (a)
scoped memory areas are regions of memory not subject
to garbage collection, (b) threads, called NoHeapReal-
timeThreads, that do not interact with the heap and thus
can not interfere with, or be interfered by, the garbage col-
lector. These abstractions are sufficient to protect hard real-
time tasks from experiencing GC related jitter.
The paper is organized as follows. Section 2 introduces

the RTSJ scoped memory interface. The presentation fo-
cuses on the parts of the API relevant to the design pat-
terns presented later. Section 3 introduces design patterns
and programming idioms for RTSJ programming. These
patterns are intended to provide the basis for a disciplined
Real-time Java programming style. Section 4 introduces an
example RTSJ program that simulates an aircraft collision
detector. Section 5 concludes.

2. RTSJ Scoped Memory

Scoped memory areas were designed to meet two equally
important performance requirements, namely, provide pre-
dictable allocation and deallocation performance, and en-
sure that hard real-time threads need not block when mem-
ory is being reclaimed by the VM. Practical consideration
also constrained the design space, as RTSJ programs must
coexist with soft real-time ones and legacy Java codes (both
of which may experience GC pauses).
Scoped memory is similar in principle to the familiar no-

tion of stack-based allocation. A memory scope provides a
pool of memory that can be used to allocate objects. As with
data within a stack frame, individual objects allocated in
a scope can not be deallocated. Instead, an entire memory
scope can be torn down at the same time. Each scope can
be entered by multiple threads of control which will allo-
cate objects from the same pool and communicate by shared

variables. The physical memory associated with scope can
be reused as soon as all threads exit that scope.
Scopes can be nested; the nesting relation is defined by

the thread entry order. When a real-time thread executing in
some original memory scope enters another scope, we say
that the original scope becomes the parent of the newly en-
tered one. Since multiple threads can be executing within
the same scope at any given time, a scope can be the parent
of multiple other scopes. The scope hierarchy thus forms a
tree (or a cactus stack) rather than a simple stack.
The RTSJ defines two distinguished scopes, repre-

sented by the Java classes ImmortalMemory and Heap-
Memory, respectively, for objects with unbounded life-
times and objects that must be garbage collected. Moreover,
two new kinds of threads are introduced: Realtime-
Thread and NoHeapRealtimeThread, both are
real-time threads with the difference that the latter is pro-
tected from GC pauses. Pauses can come about for two
reasons either because the GC is invoked during the exe-
cution of a real-time thread as a side effect of memory al-
location, or a real-time thread is released while the GC is
running and must wait until all data structures are in a con-
sistent state (this time is defined to be the GC preemp-
tion latency in the RTSJ). NoHeapRealtimeThreads
are immune to both problems as they run at a higher pri-
ority than the GC and can not access heap allocated ob-
jects. Thus no heap threads do not cause heap allocation
and do not require heap allocated objects to be in a consis-
tent state.
The RTSJ allows references across scopes. But as Java

is a safe language it forbids the existence of dangling ref-
erences. Every reference must always be a valid reference
to a live object or null. To maintain safety two rules are en-
forced:
• Because scoped memory areas can be shared, a refer-
ence counting technique is used to ensure that the ob-
jects in them are only reclaimed after all threads have
finished using the memory area.

• Because a scoped memory area could be reclaimed
at any time, it is not permitted for a memory area
with a longer lifetime to hold a reference to an ob-
ject allocated in a memory area with a shorter lifetime.
This means that heap memory and immortal memory
cannot hold references to objects allocated in scoped
memory. Nor can one scoped memory area hold a ref-
erence to an object allocated in a lower (more deeply
nested) memory area.

Conservatively speaking, these rules require that every
memory access be checked to ensure that it does not violate
the rules. Combined with the heap-access restrictions of no
heap threads, this imposes some overhead at run-time.
Fig. 1 is a valid scope structure composed of two mem-

ory scopes, immortal memory and heap memory. Notice the

ImmortalMemory

Scope A Scope B

ScopedMemory instance
Scope parenting relation
Legal memory reference
Backing store association
Physical memory

HeapMemory

Figure 1. Two scoped memory areas parented in im-
mortal memory. Heavy arrows represent allowed ref-
erence patterns. While any scope is allowed to refer
into the heap, a NoHeapRealtimeThread is not
allowed to read those references. These constraints
are implemented by read/write barriers are runtime.

distinction between the instance of the ScopedMemory
classes (Java objects) and the memory they denote. We
show the ScopedMemory instance allocated within a par-
ent scope holding a pointer to the start of the backing store
used to allocate objects within that scope. The location of
scoped memory instances is not directly related to their po-
sition in the scope hierarchy.

2.1. RTSJ Memory Management API

We discuss the key methods and classes that are relevant
to scoped memory in the RTSJ API1. The MemoryArea
class is the abstract parent of all classes representing mem-
ory. Its subclasses include HeapMemory and Immortal-
Memory, both of which have a singleton instance ob-
tained by invoking the instance() method. All mem-
ory area classes implement the enter() and execute-
InArea() methods which permit application code to ex-
ecute within the allocation context of the chosen memory
area. Furthermore, the getMemoryArea() method lets
one obtain the allocation context of an object – an instance
of a subclass of MemoryArea. Finally, all memory areas
support methods to reflectively allocate objects.
ScopedMemory is the abstract parent class of all scoped
memory classes, and it is subclassed by LTMemory and
VTMemory. Allocation in an LTMemory area is guaran-
teed to take time linear in the size of the allocated object,

1 We omit discussing the SizeEstimator class used to esti-
mate the size required for objects of a given class, as well as
classes dealing with physical and raw memory.

while allocation times in a VTMemory may vary. Memory
scopes support methods for setting and retrieving a portal
object, setPortal() and getPortal(), which is used
for communication between threads. getReference-
Count() returns the number of threads that have entered
but not yet exited the scope. The join() method can be
used to notify a thread when the reference count of the tar-
get scope reaches zero.
The only classes allowed to enter scoped memory are

the two real-time thread classes. The RealtimeThread
class provides a method that returns the current mem-
ory area for the current thread, getCurrentMemory-
Area(), as well as a method to get the number of ar-
eas that are on the current thread’s active scope stack,
getMemoryAreaStackDepth(), and to obtain a ref-
erence to one of those areas, getOuterMemoryArea().
A NoHeapRealtimeThread must be associated with
scoped memory or immortal memory. It can never allocate
an object in the heap and is forbidden from reading or writ-
ing any reference to an object that is heap allocated.

2.2. Scoped Memory Areas Semantics

The definition of memory area given in [2] has been
amended several times and the meaning of some of the finer
points is still being debated. This section details the se-
mantics of scoped memory and introduces the concepts of
scope stack and active scope stack.
Reference semantics. The RTSJ memory model enforces
runtime constraints on the use of object references. Fig. 1
shows all valid references patterns for a given scope hierar-
chy. As the figure suggests references into immortal mem-
ory and the heap are always permitted and any scope can
refer into its parent scope (and transitively to all parent
scopes). Attempting to create any other cross-scope refer-
ences will result in a runtime exception. These invariants
can be shown to be sufficient to ensure memory safety.
Additionally, NoHeapRealtimeThreads are prohibited
from manipulating heap references, even though it is per-
fectly legal for heap references to be stored in any scope.
This last rule is needed to ensure that a NoHeapReal-
timeThread can preempt the garbage collector.
Parented versus Unparented scopes. Every scoped mem-
ory area starts out unparented. An unparented scope has a
reference count of zero, contains no data, and is not occu-
pied by any threads. When entered by a real-time thread, an
unparented scope becomes parented. A parented scope has
a non-zero reference count, may contain data, and must be
occupied by at least one thread. When a parented scope’s
reference count drops to zero, it becomes unparented again
and objects in that scope can be finalized and deallocated.
Dynamic scope hierarchy. Scoped memory areas are re-
lated by a transitive parent relation. We say that a scope

S1 is the direct parent of another scope S2 if a real-time
thread entered S2 from S1. Transitively any parent of S1
is a parent of S2. In the RTSJ, the runtime scope struc-
ture is constrained by the single parent rule which states
that a scope can only have, at any given time, a single
parent scope. The parent is established when the scope is
first entered and remains for the lifetime of the objects al-
located in the scope (while getReferenceCount() is
non-zero). While a scope can only have a single parent, it
is perfectly legal for it to have multiple descendants. Af-
ter all threads exit a scope, the physical memory associ-
ated with the instance of ScopedMemory is automatically
zeroed out (when getReferenceCount() == 0), so
that when re-entered, the scope’s memory pool is available
again. Re-entrant scopes are the norm in RTSJ programs.
Primordial scope. The dynamic scope hierarchy is rooted
at the primordial scope, which is made up of Heap-
Memory and ImmortalMemory. Although heap and
immortal memory areas have different semantics, refer-
ences between them are freely allowed and both have the
property of always existing; hence, it makes sense to com-
bine them into a single primordial scope when discussing
scoped memory semantics.
Scope stacks and current scope. The scope stack of each
thread contains the list of all scopes entered by the thread
(either via enter() or executeInArea()) in the order
in which they were entered. A scope stack will contain mul-
tiple occurrences of the same scope in the case execute-
InArea() has been used to enter a parent scope, or when
the primordial scope is entered recursively. A thread’s cur-
rent scope is the last element pushed on the stack. A thread’s
parenting scope is the last non-primordial scope pushed on
the stack, or the primordial scope if no other scopes have
been pushed. The role of the scope stack is to keep track
of the execution state of each thread, while the parent rela-
tionship records the allowed inter-scope operations. Enter-
ing a scope entails checking that the parenting scope is ei-
ther the parent of the scope about to be entered or that the
scope about to be entered has no parent.
Active scope stack. A thread’s active stack is a sub-
set of the scope stack. While the scope stack grows upon
executeInArea(), the active stack is unwound up to
the scope that executeInArea() is applied to. The ac-
tive stack is visible to the user via getMemoryArea-
StackDepth() and getOuterMemoryArea(). It can
be easily observed that the active stack consists of the tran-
sitive parents of the parenting scope.
Fig. 2 illustrates a valid sequence of operations on a

thread’s scope stack. We now discuss some of the main op-
erations in the RTSJ API and their interpretation.
Enter. The enter() method’s behavior depends on the
type of scope that it is applied to. If used on the primor-
dial scope (either HeapMemory or ImmortalMemory),

active
scope stack scope stack

a c d a a

b b
b

active
scope stack scope stack

a d a a

b b
b c c

c

active
scope stack scope stack

a d a a

b
b c

a
c

(i) Initial state for thread t. (ii) t: enter(c) (iii) t: executeInArea(a)

active
scope stack scope stack

a a a

b d
b d c

a
c d

active
scope stack scope stack

a d a a

b
b c

a
c

active
scope stack scope stack

a d a a

b b
b c c

c

(iv) t: enter(d) (v) t: exit (return from iv) (vi) t: exit (return from iii)

Figure 2. The figures illustrate the parent relation between scopes and both the scope stack and active scope stack of
thread t. Notice that entering in c and d sets their parents to b and a respectively, which are the current scopes of t at
instants (i) and (iii). When t exits d, the scope’s parent is unset. The active stack is obtained by the transitive closure
of the parent’s of the current scope.

this method causes the primordial scope to be pushed on
the scope stack. Otherwise, this method behaves as follows:
First, it checks that the scope about to be entered is either
unparented, or that its parent is the parenting scope. The
scope is pushed on the thread’s scope stack and the active
stack, current scope, and parenting scope are updated. The
reference count of the entered scope is increased by one.

ExecuteInArea. The executeInArea() method has
as precondition that the scope about to be entered must al-
ready be a parent (within the scope hierarchy) of the cur-
rent scope (this is equivalent to saying that it is on the ac-
tive scope stack). The scope is pushed on the scope stack, its
reference count is increased by one. The active stack is un-
wound so that the entered scope is the new top. The current
scope is updated.

Exit. Leaving a scope occurs when a thread returns from
an enter or executeInArea method (either normally
or with an exception). An exit action pops the top of scope
stack. The reference count of the current scope is decreased
by one. If the current scope’s reference count is zero, the
scope is cleared and it’s parent is undefined. The current
scope is updated to the new top of the stack, the active stack
is rewound.

GetMemoryAreaStackDepth. Return the number of ele-
ment on the active scope stack.

GetOuterMemoryArea. This method returns the ith ele-
ment in the active scope stack.

3. RTSJ Design Patterns

In this section, we describe several idioms and design pat-
terns involving scoped memory in an effort to simplify the
design of Real-Time Java programs. All methods and fields
in the code fragments are public unless specified otherwise.

3.1. The Scoped Run Loop Pattern

Many real-time applications are structured around a top-
level run loop which repeatedly invokes application specific
code. Typically, almost all of the memory allocated in one
iteration of the run loop should be recycled and made avail-
able to the loop next time around. A prototypical run loop:

void runLoop() {
while (true) {

...wait for input

...some behavior
}

}
In a scoped run loop, the loop body is extracted into a
Runnable. The loop itself is modified to allocate a scoped
memory area and repeatedly execute the body of the method
within that scope. The resulting code will take advantage of
memory area’s predictable performance and will not have to
rely on the garbage collector. At each iteration of the loop
the memory area will be entered and exited again, thus re-
claiming any temporary objects created by the loop’s body.

class RunLoopIteration implements Runnable {
void run() {

...wait for input

...some behavior } }
void runLoop() {

memory = new LTMemory(init sz, max sz);
runLoop = new RunLoopIteration();
while (true) memory.enter(runLoop); }

When converting plain Java code to Real-Time Java, we
found that using scoped run loopwas straightforward. How-
ever, certain constraints are placed on the loop logic. For
example, preserving state from one iteration to the next re-
quires additional code, as will be presented in Section 3.3.
Furthermore, the logic may not read from, nor write to,
static reference fields as these fields are allocated within im-
mortal memory and therefore cannot be set to refer to ob-
jects allocated in scoped memory. Thus, for example, the
typical implementation of singleton pattern [4] is likely to
cause runtime errors.

3.2. The Encapsulated Method Pattern

The ideal scenario for scoped memory is a method which al-
locates intermediate results which can be discarded when
that method returns. Scoped memory helps in two ways:
first, allocation is performed in linear time, and second,
deallocation is implicit. Certain computational tasks are
particularly well-suited for being executed in a scope. Sinks:
methods whose result set is not returned to the program, but
relayed to an external entity, such as a file, a network socket,
or a specialized hardware device. Pure functions: methods
that do not modify external state.
The easiest way of scoping a method is to have the

body implemented in a static inner class2 that imple-
ments Runnable. The method instantiates the runnable
and enters into a, likely preallocated, scope passing the
runnable as a parameter. The following code shows an
EncapsulatedMethod as a static inner class. Any ar-
guments needed by the method should be represented by
private fields of the class and initialized by the construc-
tor.

static class EncapsulatedMethod
implements Runnable {

EncapsulatedMethod(arguments) {
...initialization... }

void run() {
...method body... } }

2 Java’s translation scheme for non-static inner classes intro-
duces a reference to the enclosing instance. In a NoHeap-
RealtimeThread an access to a heap-allocated outer ob-
ject results in an exception.

The method can be invoked by calling enter or
executeInArea. For example, the following exe-
cutes the method in the memory area of another ob-
ject:

area = MemoryArea.getMemoryArea(object);
area.executeInArea(

new EncapsulatedMethod(arguments));

We assume that the only memory the method accesses is
given to it in the form of parameters. The parameters may
be objects of arbitrary complexity3. However, the param-
eter objects cannot be made to reference any memory al-
located inside the EncapsulatedMethod. Also, return-
ing a newly allocated structure object or array would vio-
late RTSJ reference semantics. Therefore, an encapsulated
method has two options for returning results to the caller: ei-
ther return a primitive, or return nothing and modify some
of its parameter objects in situ. Two restrictions remain: the
caller must have a good upper bound on the size of the re-
sult, and the callee may not allocate any additional memory
for storing the result. These constraints, especially the lat-
ter, may prove too restrictive. An alternative is to perform
the allocation of result objects reflectively in a parent scope.
The following code fragment is an example of a function re-
turning an array of size elements which can be used in its
parent scope.

area = ImmortalMemory.instance();
result = (int[]) area.newArray(

int[].class, size);
...
return result;

The runtime cost and cumbersome syntax of reflective allo-
cation is often sufficient to limit use of this idiom.

3.3. The Multi-scoped Object Pattern

While safety advocates against crossing scope boundaries,
it is sometimes necessary for an object to span several
scopes. This maybe done for convenience, for example, to
initialize long-lived objects for the lifetime of the applica-
tion, or to preserve state across scope lifetimes. Or, as de-
scribed in Section 3.2, to store results of an encapsulated
computation. A multi-scoped object is thus an instance of a
class accessed from different memory scopes. The key is-
sues here are ensuring that memory allocation performed
within multi-scoped object is done in the correct allocation
context, and that arguments to methods do not cause ille-
gal access errors.

3 For a NoHeapRealtimeThread the parameters must be al-
located within a scoped region or immortal memory. A com-
mon idiom for using no-heap threads is to have a (plain) real-
time thread enter a scoped region and then create the no-heap
thread.

The structure of a multi-scoped object is shown in Fig. 3.
The class members are split between scope safe and scope
unsafe methods and fields. Primitive fields are always con-
sidered scope safe and can thus be public. Reference fields
must be manipulated with care. They are thus declared pri-
vate and encapsulated by accessor methods. Methods that
are written to work correctly from within any scope are
deemed to be safe. Methods that expect to be in a particular
scope or expect that their arguments be allocated within par-
ticular scopes are unsafe. As a convention, unsafe methods
are marked by declaring an unchecked exception Scope-
Unsafe. The constructor of the class runs, by definition,
in the object’s allocation context and thus may assign to all
fields.

class MultiscopedObject {
// primitives are scope safe
int prim;

private Object ref;

MultiscopedObject(...) {
// allocate and init from original scope
ref = ...

}
// scope safe methods
Object s1(...) {}
// scope unsafe methods
Object u1(...) throws ScopeUnsafe {}

}
Figure 3. Multi-scoped Object

Many classes can be adapted to fit this pattern with a mod-
icum of changes. The simple case for a multi-scoped object
is when the object either keeps no state, or when the object
does not need to modify its state. A good example here is
an InputStream object that does no buffering and there-
fore only needs to keep a handle to some operating system
resource. In such a case, the object requires no modifica-
tion to be used from multiple scopes. It is possible that an
object needs to modify its state regularly; but if the object
only manipulates primitive values, then it requires no mod-
ification either.
However, if the multi-scope object needs to perform allo-

cation, then some changes to its code are necessary to make
the object work properly from multiple scopes. Consider a
AircraftData object that has a hashtable, and has an
update() method that performs some computation and
then updates the table by calling put().

class AircraftData {
private Hashtable my hash = new Hashtable();

void update(...) throws ScopeUnsafe {
my hash.put(key, val); }

}

B

A

aircraftData

htput

my hash

my hash

Figure 4. The multi-scoped object aircraftData
was allocated in scope A, and is being used from
scope B. Invoking the update()method on it causes
a HTPut instance to be allocated within B. This ob-
ject will then be set to execute in the scope A to per-
form the modification to the hashtable referred to by
variable my hash.

Assume that AircraftData is allocated in scope A. Nat-
urally, my hash would also be allocated in A, so the refer-
ence would be legal. What would happen if update()was
called from some other scoped B, where B is a child of A?
An error would be thrown inside put() because of an at-
tempt to make an illegal reference, either due to allocation
of a hashtable bucket, or if one of key or val were allo-
cated in a child scope of A.
If update() is intended to be used from another scope,

then the following changes are needed. First, the put()
method must be executed in scoped memory area A. Sec-
ond, we must make sure that the objects referenced by val
and key were allocated in A as well. The AircraftData
class can be thus rewritten as follows. (Fig. 4 illustrates
this.)

class AircraftData {
private Hashtable my hash =

new Hashtable();

class HTPut implements Runnable {
Object val , key ;
HTPut(Object key, Object val) {

val = val; key = key;}
void run() {

my hash.put(key , val); }
}
void update(...) {

MemoryArea.getMemoryArea(this).
executeInArea(

new HTPut(key, val)); }
}
The call to getMemoryArea() returns the allocation
context of the AircraftData object, namely A. The
put() call then is executed within that allocation con-
text. This is achieved by creating an encapsulated method
HTPut and calling executeInArea() to switch alloca-
tion context.

Of course the new version of AircraftData will still
fail if key or val are allocated in scoped memory area B.
A simple idiom for ensuring that the objects are indeed al-
located within A is to perform a deep copy of the data struc-
tures. This can be done, for example, in the body of run():

void run() {
my hash.put(key .copy(), v .copy()); }

This example highlights a potential problem with multi-
scoped object. More and more of the original scope, in this
case A, will be populated with each call to methods like
update(). For this pattern to be effective, the program-
mer must make sure that either no allocation is performed
within the original scope, or ensure that memory of the orig-
inal scope can be reclaimed before it is exhausted.

3.4. Portal Object Idioms

If an object must be shared across multiple threads then
each thread must know how to obtain a reference to that ob-
ject. There are typically two choices for how that reference
is obtained: (i) It is stored in a well-known location (such
as a static field of a well-known class) (ii) It is passed ex-
plicitly using some form of inter-thread communication (the
simplest case of which, is to pass it as a parameter when
constructing the thread). If the shared object must be allo-
cated in a scope, then using a well-known static field is not
an option, as static fields live in immortal memory. An al-
ternative is to use portal objects.
The ScopedMemory.setPortal(obj) method

sets the portal object to be obj. The portal object can only
refer to an object allocated in the scope or an outer scope.
The current portal object, if any, is obtained from the get-
Portal() method. However, to invoke this method, a
thread must be active within the scope. When a scope is re-
claimed the portal is cleared.
Initialization of the portal poses a problem: one must de-

cide which thread sets it and when? The answer depends
on how the portal is to be used. If one thread is a desig-
nated creator, and others are simply clients, then the clients
should synchronize with the creator. If the first thread in the
scope is supposed to setup the portal, then all threads must
synchronize to establish that they are indeed first and that
they should set the portal. The rub is that synchronization
requires a shared object, and we are in the process of trying
to set up a shared object! Again, we have two choices for
choosing a lock: explicit communication or a well-known
object. If explicit communication is possible then we prob-
ably do not need to be using the portal to begin with or
we would communicate the portal object directly. The well-
known object could be any object allocated in immortal
memory or in a parent scope. For example, the creator of
the scope might define a static field for this purpose:

static final Object portalLock = new Object();

But, there is already a shared object being used by all the
threads in the scoped memory area: the scoped memory area
itself. So a simple solution is to synchronize on the scope.

synchronized(ma) {
shared = (SharedObject) ma.getPortal();
if (shared == null)

ma.setPortal(new SharedObject(...));
}
Note that making getPortal() and setPortal()
synchronized methods would not suffice to correctly coor-
dinate the actions of the threads as they have to atomically
query if the portal object exists and create it if it does not. If
the threads are not explicitly aware of which scoped mem-
ory area they are using, they can find out by invoking get-
CurrentMemoryArea().
While using the scope object for synchronization seems

simple and convenient it should be used with caution. If the
application structure required users of the portal to wait un-
til it was created, then you might be tempted to use the mon-
itor methods wait() and notifyAll() to enforce this.
The danger with this is that the ScopedMemory class may
internally use these methods to implement the join() and
joinAndEnter() methods, and so application use of
them would lead to incorrect behavior.

3.5. The Wedge Thread Pattern

While the automatic reclamation of scoped memory upon
exit of the last thread is often desirable, it is sometimes
needed to prevent reclamation. For instance, if thread t
stores an object reference in a portal (intended for thread
s) and wishes to exit the scope before thread s enters and
calls getPortal(). A normal exit of the scope by thread
t could reclaim the scope’s memory (if thread s has not yet
entered the scope) and clear the portal.
The solution is to use a wedge thread to keep the scope

alive. A wedge is a real time thread which will enter the
scope and block, waiting for a signal to exit the scope. To
do this, we first create a simple ExitCondition class.
A high-level layout of this class is shown in next. The
WedgeThread class inherits from RealtimeThread
and will be initialized so that it has a higher priority than
the thread that will start the wedge.

class ExitCondition {
synchronized void waitForExit()

throws InterruptedException;

synchronized void signalExit();
}
class WedgeThread extends RealtimeThread {

WedgeThread() {
super(...);

}

void run() {
exit = new ExitCondition();
getCurrentMemoryArea().

setPortal(exit);
try {

exit.waitForExit();
} catch (InterruptedException) {

return; }
} }
A thread wishing to keep a scoped memory area alive after
the enter method completes may then create a new instance
of WedgeThread and start it. Later, a thread wishing to
deallocate the scoped memory after all working threads exit
would call signalExit on the ExitCondition. The
exit condition object may be retrieved using getPortal.

start the wedge to keep the current allocation context alive
wedge = new WedgeThread();
wedge.start();

stopping the wedge destroy the scope after all other threads exit
exit = (ExitCondition)

getCurrentMemoryArea().getPortal();
exit.signalExit();

A cleaner approach to keeping a scope alive would require
additional RTSJ API support. For example, the Scoped-
Memory class could give the user access to its reference
count via retain() and release()methods. This way,
a thread wishing to keep a scope alive after enter com-
pletes would only need to call retain(). Later, a call
to release() would be used to indicate that the scope
should be deallocated as soon as all threads exit.

3.6. The Handoff Pattern

Many real-time tasks deal with filtering large amounts of
data. The characteristic of such tasks is that data is first pro-
cessed, then a, usually smaller, summary is retained while
the main data area is reclaimed. This suggest an architec-
ture in which one thread (usually a NoHeapRealtime-
Thread) will perform data acquisition and initial treat-
ment, then this thread will handoff data to a second thread,
not necessarily a NoHeapRealtimeThread, which will
extract a summary and, perhaps, communicate results to
other parts of the system, such as, e.g., a user interface.
The difficulty in translating this idea to real-time Java is

that there is no easy way to hand off an entire scope. As-
sume that desired behavior is to receive data in scope a,
summarize it in scope b and then free a. The obvious way
to achieve this is to arrange for b to be the parent of a, thus
allowing a thread running in a to store results in b. While
this meets the requirements we outlined it has several seri-
ous drawbacks: (1) the size of memory needed for the sum-
mary must be known before the data is received in order
to properly size scope b, (2) scope b will remain in use as

long as all threads that need either a or b have not returned,
(3) this approach is not appropriate for a longer sequence
of handoffs, establishing a ten stage pipeline requires ten
nested scopes, all pre-allocated with the right size.
The data handoff pattern circumvents these problems

with a rather subtle use of scoped memory. In general, we
set up a data handoff when two scopes a and b which are
siblings (they share some parent scope p) need to directly
exchange data. We assume that there is an instance of a class
Source allocated in a and an instance of a class Target
allocated in b, and that the handoff consists of repeatedly
calling read on the source object and passing the return
value as an argument to calls of write on the target. The
handoff is performed by invoking handoff() with both
instances.

class Source {
Object read();
boolean available(); }

class Target {
void write(Object o); }

void handoff(Source src, Target tgt) {
while (src.available())

tgt.write(src.read());
}

To get this to work we will temporarily establish a reference
across sibling scopes. This may appear to violate the RTSJ
safety rules, but as we will explain below, it is actually safe.
We assume that variable mem a, mem b and mem parent
refer to memory area objects for scopes a, b and their par-
ent scope respectively, and that these are accessible. The
code to perform the handoff will turn the handoff method
into an encapsulated method with a twist. Rather than ex-
pecting the target as an argument it is obtained from a por-
tal.

a b

p

bridge

handoff
sourcepayload

portal

execInArea(bridge)

enter(handoff)

target payload copy

....... .
. . . .

. . .
.

copy payload

Figure 5. The Target object copies the Source
payload from scope a to sibling scope b. The ref-
erence pattern appears to break the RTSJ memory
safety rules, but is actually safe due to the presence
of the same thread in both areas.

class Handoff implements Runnable {
private Source src ;

Handoff(Source src) { src = src; }
void run() {

mem = RealtimeThread
.currentRealtimeThread()
.getCurrentMemoryArea();

tgt = (Target) mem.getPortal();
handoff(src , tgt);

}

void handoff(Source src, Target tgt) {
...

}
Then from within a the following code will trigger handoff:

class Bridge implements Runnable {
private handoff ;

Bridge(Handoff handoff) {
handoff = handoff; }

void run() {
mem b.enter(handoff); }

}

void doHandoff() {
bridge = new Bridge(new Handoff(source));
mem parent.executeInArea(bridge); }

The temporary cross-sibling scope reference is safe because
no references are stored in scope b that point to scope a (a
deep copy of the payload is stored in b and not a reference
to the payload). It is safe to read a reference in a while in b
because it is guaranteed that scope awill not disappear. The
reason being that the current thread of execution has not yet
exited scope a and cannot do so until it exits scope b. Thus
any references that are read will be valid.

4. An Example RTSJ program

We describe a program that simulates an aircraft collision
detection system in Real-Time Java. A collision detector is
a single threaded hard real-time task which must be ready
to receive a stream of aircrafts, identified by their call sign,
along with their respective positions, and must determine if
any of these aircraft are on a collision course. Determinis-
tic running times are important as dropping a frame could
result in failing to report a collision.
The algorithm is to be invoked repeatedly in a loop,

checking for collisions on each iteration. The algorithm pro-
ceeds as follows. First, the next frame containing call signs
and positions is retrieved. Next, the state table is used to
create a list of motion objects representing the movement of
aircraft from the previous frame. The algorithm has been pa-
rameterized by the collision detection strategy. The installed

strategy is then queried to determine if a collision of aircraft
has occurred by examining the list of motion objects created
from the state table. To ensure that this thread can run with
optimal efficiency, the algorithm runs as a NoHeapReal-
timeThread. The NoHeapRealtimeThread is allo-
cated in immortal memory and its arguments are copied into
immortal memory. But it should be obvious that we do not
want the entire collision detection system to run in the allo-
cation context of immortal memory. Thus, the first action of
the system is to create and enter a scoped memory. So the
algorithm allocates this second memory scope before creat-
ing the detector object that will perform the search for col-
lisions, and the table that holds the intermediate results. It
then loops forever, entering the scoped memory area, and
running the collision detection algorithm.
The collision detector was converted from plain Java us-

ing the scoped run loop and multi-scoped object patterns.
In this section, we will step through some of the changes
that we made to the collision detector to make it work in
Real-Time Java. The plain Java collision detector consists
of a run loop that follows a straight-forward algorithm: re-
ceive a frame containing recent aircraft positions, lookup
the last known positions of each aircraft, check if any air-
craft trajectories intersect (indicating a collision), and report
the results. Each of these stages requires allocation of tem-
porary memory to store intermediate results.

4.1. Using Scoped Run Loop

Our goal is to make the collision detector work without us-
ing the garbage collected heap. Therefore, we need to run
the appropriate portions of the collision detector inside a
scoped memory. For this, we used the scoped run loop pat-
tern. On the surface, this looks quite simple.

class Runner implements Runnable {

public void run() {
LTMemory cdmem =

new LTMemory(initsz, maxsz);
Detector cd =

new Detector(new StateTable());
while (true)

cdmem.enter(cd);
} }

The Runner’s allocation context is mem. The loop inside
the run method above simply invokes the Detector re-
peatedly inside cdmem, so that the memory used by the de-
tector is reclaimed at the end of each iteration.

4.2. Using Multi-Scope Object

The Detector class, seen in Fig. 6, is simple. It in-
stantiates two objects: the StateTable, responsi-

class Detector implements Runnable {

private StateTable state;
private TwoPhaseStrategy strategy;

Detector(StateTable state) {
this.state = state;
this.strategy = new TwoPhaseStrategy(); }

void run () {
frame = receiveFrame();
collisions = strategy.lookForCollisions(

state.createMotions(f));
send collision information to be displayed ...

}
}

class StateTable {
private HashMap prevState = new HashMap();

List createMotions(Frame f) {
ret = new LinkedList();
for (iter = f.iterator(); iter.hasNext();) {

new pos = new Vector3d();
plane = iter.next(new pos);
old pos = (Vector3d) prevState.get(plane);
if (old pos == null) {

mem = MemoryArea.getMemoryArea(this);
mem.executeInArea(

new HashtablePutter(plane, new pos));
} else

old pos.set(new pos);
ret.add(new Motion(plane, new pos));

}
return ret;

}
Figure 6. The Detector and StateTable classes

ble for keeping track of recent aircraft positions, and the
TwoPhaseStrategy, a stateless object that runs the ac-
tual collision detection algorithm.
Each time the detector’s run method is called, a new

Frame representing the latest aircraft positions is created
by native code in the receiveFrame() method, the
frame is passed to the StateTable where each new posi-
tion is associated with the last known position of the same
aircraft, and the lookForCollisionsmethod delegates
to several other objects to identify all collisions (Fig. 6).
All of the temporary memory used to store frames and lists
objects is reclaimed when run() completes. This intro-
duces a problem: the state table must keep some informa-
tion from the previous frame in order to process each new
frame. To resolve this, we use the techniques described
in the multi-scoped object pattern. The state table uses
executeInArea() every time it needs to add new ob-
jects to its collection of known aircraft; in all other cases,
it modifies objects in place without any additional allo-
cation. StateTable allocates new memory in the outer
area only when a new aircraft enters the simulation. At
present, the collision detector identifies aircraft by their call
sign. So, unless the simulation uses a completely new cal-
lusing for each new aircraft, we can be fairly certain that
StateTable will not run out of memory, even when new
aircraft are being introduced into the simulation.

5. Conclusions

Scoped memory is one of the cornerstones of the Real-
Time Specification for Java. It presents language imple-
mentors with a number of challenges and exposes a rich
and powerful interface to programmers. This paper has pre-
sented an informal semantics of the scope management and

reference rules of the RTSJ. We have identified a number
of non-obvious implementation constraints and pitfalls of
RTSJ programming. Finally we have documented a num-
ber of design patterns that have proven useful during our
own work with the RTSJ. The patterns introduced here are
a starting point towards a programming discipline for build-
ing real-time systems in Java. But more work is needed in
the direction of enforcing design time correctness rules as
the prospect of sudden memory access violation in the mid-
dle of real-time tasks is not pleasant.
Acknowledgments: This work was supported by the

DARPA PCES program and NSF CCR-0093282.

References

[1] William S. Beebee, Jr. and Martin Rinard. An implementation
of scoped memory for real-time Java. Emsoft - LNCS, 2211,
2001.

[2] Greg Bollella, James Gosling, Benjamin Brosgol, Peter Dib-
ble, Steve Furr, and Mark Turnbull. The Real-Time Specifica-
tion for Java. Java Series. Addison-Wesley, June 2000.

[3] Angelo Corsaro and Doug Schmidt. The design and perfor-
mace of the jRate Real-Time Java implementation. In The 4th
International Symposium on Distributed Objects and Applica-
tions (DOA’02), 2002.

[4] Erich Gamma, Richard Helm, Ralph E. Johnson, and John
Vlissides. Design Patterns. Addison-Wesley, 1994.

[5] Timesys Inc. jTime. 2003. www.timesys.com.
[6] S3 Lab. The Ovm customizable virtual machine project. 2004.

www.ovmj.org.
[7] NASA/JPL and Sun. Golden gate. 2003.

research.sun.com/projects/goldengate.
[8] David Sharp. Real-time distributed object computing: Ready

for mission-critical embedded system applications. In Pro-
ceeding of the Third International Symposium on Distribtued-
Objects and Applications (DOA’01), 2001.

