
Real Time Java on resource-constrained platforms with Fiji VM

Filip Pizlo Lukasz Ziarek Jan Vitek
Department of Computer Science, Purdue University, W. Lafayette, IN, 47909

Fiji Systems, LLC, Indianapolis, IN 46202.
E-mail: {fil,luke,jan}@fiji-systems.com

Abstract
Real-time Java is quickly emerging as a platform for building
safety-critical embedded systems. The real-time variants of Java,
including [8, 15], are attractive alternatives to Ada and C since
they provide a cleaner, simpler, and safer programming model.
Unfortunately, current real-time Java implementations have trouble
scaling down to very hard real-time embedded settings, where
memory is scarce and processing power is limited. In this paper, we
describe the architecture of the Fiji VM, which enables vanilla Java
applications to run in very hard environments, including booting
on bare hardware with only very rudimentary operating system
support. We also show that our minimalistic approach delivers
comparable performance to that of server-class production Java
Virtual Machine implementations.

1. Introduction
Scaling modern, mainstream languages and their associated run-
times down to power-constrained embedded settings is difficult, es-
pecially if hard real-time guarantees must be ensured. While Java
is emerging in a wide variety of real-time application domains, the
availability of standards-compliant Java implementations for em-
bedded systems is limited, especially if automatic memory man-
agement is desired. In this paper, we explore the areas where ex-
isting Java implementations are lacking, and report on the work
completed so far on a brand new, clean-room implementation of
Java – the Fiji VM. In this paper we present the following five con-
tributions:

1. To our knowledge, the first high-performance real-time Java
implementation that is small yet robust enough to boot from
bare metal through integration with the RTEMS [18] real-time
kernel, while retaining the ability to run vanilla Java code. In
particular, we show performance results of our VM running the
SPECjvm98 benchmark suite, with real-time garbage collection,
on bare hardware.

2. To our knowledge, the first high-performance real-time Java
implementation that can run bottom-half interrupt handling
routines written in Java, while allowing those routines to use
heap allocation. We show that the performance of these routines
is unaffected by garbage collection.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
JTRES’09, September 23-25, 2009 Madrid, Spain
Copyright 2009 ACM 978-1-60558-732-5/09/9$10.00.

3. A survey of limitations Java virtual machines face when tar-
geting hard real-time systems. We discuss our previous experi-
ence embedding Java virtual machines and identify six key goals
state-of-the-art virtual machines should address to be better suited
for hard real-time and mission critical application domains.

4. A concise description of the Fiji VM compiler and runtime
system. We describe the unique features of the Fiji VM compiler
and runtime system and their implementation. We address each of
the six goals in the implementation and design of the Fiji VM.

5. A performance comparison between the Fiji VM and state-of-
the-art, server-class Java VMs. We also include performance num-
ber of the SPECjvm98 benchmark suite running on bare hardware.

1.1 Background
Over the past seven years, our group at Purdue has been develop-
ing the Ovm [2, 22] – a Java-in-Java metacircular virtual machine
that aims to provide hard real-time guarantees, while additionally
complying with a large subset of the Java language. Development
of Ovm has resulted in the first UAV flight using avionics written
in Java [2, 23] and the first open-source real-time garbage collec-
tor with high throughput and good mutator utilization [21]. But,
much like other Real Time Java implementations, Ovm still lacks
functionality in key areas that are essential for deeply embedded
safety-critical systems. Application domains that are of particular
interest include space flight, which requires running on very min-
imal radiation-hardened hardware with a small real-time OS ker-
nel; avionics, which utilize extensive mixed-criticality support and
adhere to guidance given in DO-178B; medical devices, especially
implanted ones, which often have a fraction of a megabyte of mem-
ory and stringent certification requirements; as well as type-safe op-
erating system support – the ability to write operating system com-
ponents with the safety and security guarantees that come with type
soundness of Java but with the expressive power of C. Within these
application domains, we identified the following key areas where
existing Real Time Java implementations need improvement.

Broad architecture support. Ovm is portable – we have demon-
strated it running on ARM, SPARC, LEON2 and LEON3, x86, and
PowerPC. However, porting to each of these architectures requires
a significant time investment. Even though the Ovm compiler gen-
erates mostly-portable C code, its optimizations make heavy use
of platform-specific assumptions. For a VM to be truly portable,
we would like to see it make no platform-specific assumptions, and
consist entirely of pure, portable ANSI C code.

Concurrency and parallelism. Ovm is uniprocessor-only and
other Real Time Java implementations (such as [1, 3, 24, 27]) have
varying levels of multiprocessing support. We are interested in
a VM that comes with multiprocessor support out of the box, and
achieves excellent performance and scalability no matter how many

Host System Runtime System

Compiled Java Code

fVM Garbage Collector fVM SCJ fVM OS interface

Operating System

Java Bytecode

fVM SSA HIR

ANSI C

fVM SSA LIR

Bytecode parsing and type
inference

SSA optimizations and
inlining

Lowering (calling convention,
object model, exceptions, etc.)

SSA optimizations

Code generation

fV
M

 C
o

m
p

il
er

GCC

Java Source
Code

javac

Program Heap

Figure 1. Fiji VM architecture.

processors or threads are in use. This is particularly important with
the current hardware trends.

Library independence. Current Real Time Java virtual machines
tend to be locked to a particular class library, making the selection
of VM harder. For example, product X may have the best perfor-
mance on a developer’s target platform, but may require a library
that is too large for successful deployment. We would like a VM
that comes with multiple library choices, enabling developers to
choose a footprint target without having to change infrastructures.

Control only that, which needs to be controlled. Ovm, much
like [24], expects to be able to override scheduling decisions made
by the operating system. This has at least three undesirable side-
effects. First, it impedes multiprocessing support. While it does not
prevent multiprocessors from being utilized, it makes the job much
harder. Second, it causes an increase in complexity that can lead to
difficulty in achieving certification, for example under DO-178B.
Since supporting VM scheduling requires duplicating much of the
scheduling logic in the operating system, the resulting runtime has
difficult-to-characterize complexities that may lead to undesirable
behavior. Proving otherwise to a certification authority will be an
unwelcome burden. Third, and perhaps most importantly, having a
VM make assumptions about scheduling behavior makes it more
difficult, and in Ovm’s case, impossible, to run Java code in the
bottom half of an operating system.

Bottom-half support. Few managed-code systems allow for type-
safe code to run in the bottom-half of an operating system. Yet, such
a feature would not only be useful but seems on the surface to be
a good fit for embedded and real-time systems. Why not leverage
type safety when writing interrupt handlers? The Singularity oper-
ating system [17] supports such a notion, but unfortunately, Singu-
larity is built around C#, not Java, and thus lacks the hard real-time
support found in existing Real Time Java implementations.

Simplicity. We strive to have a Java implementation that can be
DO-178B certified. Certification is more easily achieved if the im-
plementation is simple and easily understood by a third party. Even

if certification is not the ultimate development goal, simplicity has
many benefits such as increases in performance and stability, but
also confidence: developers like to use tools they can understand.

Speed. Last but certainly not least, Java code must run fast. Pre-
dictability is paramount – but speed is no less important. Consider
that a predictably slow implementation is not much better than an
unpredictably fast one, if the latter’s worst-case performance is no
worse than that of the former. While a Real Time Java implemen-
tation will always take a performance hit compared to those VMs
that are strictly throughput-optimized, we would like the gap to be
as small as possible.

With these requirements as our core development principles, we
set out to design and implement a new Java implementation from
scratch. We call it the Fiji VM, and the remainder of this paper
discusses its design, notable aspects of our implementation strategy,
and performance.

2. Fiji VM Design
Fiji VM, or fVM for short, is an ahead-of-time compiler for Java
bytecode programs. Our goal with fVM is to provide developers
with an automated mechanism for converting high-level Java appli-
cations into small and compact real-time executables. Fiji VM con-
sists of a compiler, a runtime library, and a choice of open-source
class libraries. In addition to supporting full Java 5 (sans class load-
ing) and JNI 1.4, Fiji VM also has some unique features: on-the-fly
concurrent real-time garbage collection based on Immix [7], and
stack allocation. Our stack allocation support, described in detail in
Sec. 2.2.2, allows for a high-performance easy-to-use alternative to
scoped memory. The sections that follow describe the Fiji compiler,
runtime, and libraries in detail.

Object payload

Lock and Type

GC word

Type

Object payload

Lock and Type

GC word

Monitor Type

(a) Object that has never been
locked

(b) Object after the first lock operation, using either
synchronized or notify/notifyAll/wait.

Figure 2. Fiji VM object model. Objects have two headers: a GC data word, and a Lock and Type word. Both words are sized according to the pointer size
on the given architecture (we support both 32-bit and 64-bit architectures). The GC data word’s format is shown in Fig. 3. The Lock and Type word may either
point to a Type record or to a Monitor. The Type lives in the data section of the executable and contains the vtable, interface table, all data required for type
inclusion tests, and everything needed to support reflection. When an object is locked for the first time, a Monitor is allocated in the heap; a pointer is installed
in the Monitor to point to the object’s Type; and the Lock and Type word is compare-and-swapped to point to the Monitor. Because the Type record has a
pointer to itself at the same offset where the Monitor has a pointer to the Type, this means that retrieving the Type of an object can always be done with just
two indirections and without branching or further computation.

2.1 Fiji VM Compiler
Fiji VM parses bytecodes in the Java 1.6 or earlier format from
which it generates high-performance ANSI C1. The generated C
code is then automatically passed to the chosen C compiler for the
target platform. Typically, we use a recent variant of GCC as our
C compiler of choice. Using C as a target language carries both
benefits and dangers. Among the biggest benefits are portability
and the ability to leverage already existing high-performance com-
piler backends; among the biggest dangers is the mismatch between
bytecode and C semantics. Additionally, the C compiler cannot per-
form some high-level optimizations as effectively on C code gener-
ated from Java as a Java-optimized compiler could. Such optimiza-
tions include control flow optimizations, such as exception opti-
mizations; locking and memory optimizations; and inlining. Thus,
the Fiji VM compiler does extensive high-level optimizations prior
to generating C.

2.1.1 Dangers of generating C from Java bytecode
Since the C language semantics are more loosely defined than those
of Java bytecode, the fVM compiler must bridge this semantic mis-
match. Consider whether the expression x < x + 5, where x is an
integer, is always true. A C compiler is free to assume that this is
the case, because the result of overflowing on x + 5 is undefined.
However, in Java the compiler cannot make that assumption, be-
cause x + 5 is strictly defined as being equal to (x + 5) mod 232 –
i.e. the wrap-around on overflow is mandatory. Of course, there are
more subtle semantic differences, even just for integer arithmetic.
For example, what does (−231) ÷ (−1) yield under signed 32-
bit integer arithmetic? In Java, the result is guaranteed to be −231,
while in C it may yield−231 or an arithmetic exception, depending
on the optimizations that the C compiler performs. The differences
between Java and C semantics become even more subtle and com-
plicated with floating point arithmetic. Therefore, any bytecode-to-
C compiler cannot simply generate the naı̈ve C equivalent for the
input bytecode; it must exercise additional caution. In the case of
Fiji VM, this includes a combination of out-of-line helper functions
for tricky arithmetic operations, which perform additional checks,
and the careful use of C compiler flags to turn off optimizations
known to cause problems.

1 We have also successfully tested Java 1.7 bytecode, but since Java 1.7
is still a moving target, the final release may include bytecode features or
pathologies that require unforeseen changes in our system.

2.1.2 Garbage collection and scoped memory support
The Fiji VM compiler has extensive support for garbage collec-
tion and scope check barriers, including those barriers necessary
to implement common anti-fragmentation techniques such as [24]
or [20]. Additionally, we use a combination of techniques from [6]
and [11] to enable accurate stack scanning of generated C func-
tions. In Fiji VM, these techniques have been both enhanced with
more aggressive compiler optimizations, and extended to allow for
portable and accurate stack traces for exception handling.

2.1.3 High-level optimization
As shown in Fig. 1, the Fiji VM compiler performs a variety of op-
timizations, at multiple stages of compilation, using a static-single-
assignment (SSA) intermediate representation. The optimizations
currently performed include:

• Inlining
• Devirtualization – turning virtual calls into direct calls
• Virtualization – turning interface calls into virtual calls
• Copy propagation
• Constant folding
• Tail duplication
• Lock elision – if a lock is known to already be held, don’t

generate code to recurse on it; additionally, don’t lock objects
that are known to be thread-local

• Intra-procedural and whole-program type propagation, with
0CFA

• Null check elimination
• Array bounds check removal

Unsurprisingly, inlining is the most profitable of these optimiza-
tions. In particular, we have found it to be most profitable when
applied only to the smallest methods. For non-recursive methods
whose bodies are smaller than a callsite, we inline in a fixpoint;
for other methods we inline based on a variety of factors, such as
frequency of execution of the call based on static estimates, and fur-
ther size estimates of the callee as well as caller. However, it should
be noted that even if our compiler is inlining only non-recursive

11 0

31 30 29 0

10 GC link pointer

01 GC link pointer

00 Scope data

Immortal object

Heap object, mark state A

Heap object, mark state B

Scope object

Figure 3. The GC data word. As shown in Fig. 2, this is the first word of
the object header. In this figure, we show the GC word as it looks on 32-bit
platforms. The highest-order two bits indicate the state, and the remaining
bits contain the payload information. It may be in any of four states: one
state for immortal objects, such as those allocated in the data section of
the executable (these include string and class literals), or objects manually
allocated in the Immortal space. For these, the payload is always zero. Two
states are reserved for heap objects, and represent the two mark states of
objects; in those states, the payload will contain a link pointer to the next
object on the current GC queue. Finally, one state is reserved for scope
objects, in which case the payload contains information about the scope.

methods whose bodies are smaller than the code we would generate
for a callsite, we reap most of the advantage of our more compli-
cated approach.

In our implementation of fVM optimizations, we have noted the
following three observations: (i) inlining works best with devirtual-
ization, (ii) devirtualization works best with virtualization, and (iii)
both devirtualization and virtualization work best in the presence of
an analysis that can accurately identify the points-to set of the re-
ceiver at a callsite. For this, we employ a scalable 0CFA, in which
all points-to sets are represented using a single machine word. The
points-to set uniquely identifies an allocation site, an exact type, or
in the worst case, a type upper bound. This simple analysis con-
verges very rapidly (20 seconds for all of SPECjvm98 with the full
GNU Classpath 0.97.2 [9]), and appears to be quite precise, based
on our current performance statistics. However, a thorough com-
parison of this algorithm’s performance relative to other scalable
0CFA algorithms has not yet been made.

2.1.4 Object model
The Fiji VM uses a two pointer-word header and a contiguous
object model. All object pointers point to the first array element,
or to four bytes past the first field if the object is not an array;
this approach, also used in Jikes RVM [12] results in simplified
array accesses. As shown in Fig. 2, the two words in the header
are the GC data word, and the Lock and Type word. The GC data
word, shown in detail in Fig. 3, holds all information necessary
to support the Real Time Specification for Java’s memory areas
- one state is reserved for immortal memory, two states for heap
memory (representing the two mark states in the garbage collector),
and one state for scoped objects. We use the two high-order bits to
represent the state. This has some interesting properties. Given a
gcword, without loss of generality, we outline the properties for
32-bit systems:

• If the gcword comes from an object not in scoped memory,
given a markedState where the markedState is either the bits
01 or 10 and indicates the expected state of currently marked
objects,

((gcword >> 30) & markedState) != 0

implies that the object should be kept alive, and the converse
implies that the object is dead. Note that since the garbage
collector never sees scoped objects except in a specialized scan
(i.e. it will never stumble upon a scoped object by following
a pointer from a heap or immortal object), this test is used
extensively in the collector to quickly identify whether the
object is known to be alive or suspected to be dead.

• gcword < (1<<30) implies that the object resides in scoped
memory.

• ((gcword >> 30) & 3) == 3 implies that the object resides
in immortal memory.

• ((gcword >> 30)-1) <unsigned 2 implies that the object
resides in the heap.

• For scoped memory systems in which cactus scope stacks are
not allowed (i.e. the scope hierarchy is linear), such as should be
the case in Reflexes, Safety Critical Java, and when performing
stack allocation, the payload for the scope state simply contains
a scope ID such that

scopeID1 >= scopeID2

implies that the object corresponding to scopeID1 has a longer
lifetime than the object corresponding to scopeID2. If GC is
disabled, then the store check is just

gcword1 >= gcword2

since gcword = 3∗230 implies that the object is immortal, and
this value is greater than the GC words for scopes. If the GC
is enabled, the scope check is augmented with arithmetic that
sign-extends the two high-order bits to fill the entire word; i.e.
any GC word for which

((gcword >> 30) & 3) != 0

is replaced with 232 − 1.

The GC data word is followed by a Lock and Type word, which
may either point to a Monitor object (the Java equivalent of a lock),
or a Type record. The first word of both a Monitor object and
a Type record is a pointer to the Type record. The Type record
thus points to itself. This means that retrieving the Type from an
object can always be accomplished by first loading from the Lock
and Type word, and then immediately loading from the pointer.
This approach allows us to closely mimic the performance of thin
locks [5], while ensuring predictability: the Monitor is inflated on
first use; this inflation step is very cheap (it’s just a pointer-bump
allocation in the Monitor space). The Monitor contains OS-specific
locking data structures. On platforms that support it, the compiler
inlines the locking fast path such that the lock operation becomes a
cheap compare-and-swap. This gives us performance that is close
to what throughput-optimized systems achieve.

2.1.5 Type inclusion and interface dispatch
The Fiji VM Type record contains all information necessary to per-
form virtual method dispatch, interface method dispatch, reflec-
tive invocations, reflective field accesses, and type inclusion tests
(instanceof and checked casts). Virtual method dispatch is done
as in other object-oriented systems; the Type record has a vtable
appended to it, through which virtual calls are made. Interface dis-
patch and type inclusion are more interesting, since these opera-
tions often have unpredictable behavior. In Fiji VM, both opera-
tions are guaranteed constant-time. In the case of type inclusion,

we use type displays [28] generated using graph coloring. For in-
terface method dispatch, we use graph coloring to allow interface
methods that are never implemented in the same classes to share
the same interface table entry. For all of SPECjvm98, this approach
leads to 12 buckets (12 bytes per type) for type inclusion and 10
interface table entries. The interface tables are further compressed
by only including an interface table in types that implement inter-
face methods, and then stripping interface tables that have leading
or trailing NULL entries.

2.2 Fiji VM Runtime
The Fiji VM runtime is light-weight; it contains two components:
the memory manager (scopes and optional garbage collection) and
an OS abstraction layer for threading and locking. The runtime
currently runs on POSIX-like platforms like Linux, NetBSD, and
Mac OS X, and on top of the RTEMS classic API. In this section,
we discuss our memory management, locking, and threading in
some detail. Note that the library, discussed in Section 2.3, has its
own OS abstractions for I/O and whatever other facilities the library
may choose to support.

2.2.1 Garbage Collection
Fiji VM currently supports an optional Immix-style on-the-fly con-
current real-time garbage collector. This collector can be run in
either a purely concurrent, or a purely slack-based mode. In this
system, objects are allocated in either a bump-pointer fashion or
first-fit fashion; in most cases, bump-pointer is used. Garbage col-
lections fall into two categories: minor and major. In minor garbage
collections, which are performed opportunistically at high fre-
quency, only entirely empty pages are freed. Partially full pages
are ignored. This style of collection is very fast, and for typical
Java programs, frees large amounts of space very rapidly. A major
collection places the empty holes in partially free pages on a free-
list, which is then used up in a first-fit or bump-pointer fashion,
depending on the size of the hole. While this approach does not
support defragmentation, it is lock-free, on-the-fly (i.e. no global
stop-the-world phase), and has very short pauses. In fact, the only
pauses are due to stack scanning. This collector can be thought
of as similar to the WebSphere Metronome [3], in that like that
collector, it lacks defragmentation, but is otherwise well suited for
real-time applications.

We are working on an alternative collector, which will add
concurrent copying; however this collector is not yet stable and we
leave its evaluation to future work.

2.2.2 Stack Allocation
Attempts at supporting manual memory management, such as
those in the Real Time Specification for Java, are often ma-
ligned for being too complex. In Fiji VM, we offer a simple al-
ternative: stack allocation. Any method may be marked with the
@StackAllocation attribute; as a result, any uses of the new key-
word will result in the object being allocated in that stack frame.
Additionally, we have a @AllocateAsCaller attribute, which in-
dicates that the method should allocate the same way as its caller;
i.e. either allocate in the same stack frame as the caller if the caller
was marked @StackAllocation, or in whatever memory area its
caller was allocating in if it was not marked @StackAllocation.
In particular, if a method without either annotation is called from
a method marked @StackAllocation, then this method will allo-
cate in the memory area determined by the Real Time Java library.

Stack allocation is not statically checked; instead, we have run-
time store checks (cannot store a stack-allocated object into the
heap, into a stack-allocated object at a lower stack frame, or into
a static field), run-time return checks (cannot return an object allo-

More FeaturesMore Compact

GNU Classpath
+ RTSJ + SCJ

FijiCore + SCJ

Fiji HardRTJ

100 KB

700 KB

3 MB

Figure 4. Fiji VM libraries. Three libraries are in the works; the most
feature-rich option, GNU Classpath, and the middle option, FijiCore, are
already operational.

final Timer t=new Timer();

t.fireAfter(10 /* ticks */,new Runnable(){

 public void run() {

 ...

 t.fireAfter(10, this); // next iteration

 }

});

Figure 5. A timer tick interrupt handler written in Java. In this code snip-
pet, the body of the run() method runs in the bottom half, in response to a
hardware timer interrupt. This method may arbitrarily allocate memory, and
use all Java features except for locking (which raises an exception to pro-
tect against deadlock). Additional APIs are provided to disable interrupts,
which provides for the traditional approach for synchronizing between in-
terrupt handlers and code executing in threads.

cated in the current stack frame), and run-time throw checks (can
only throw heap- or immortal-allocated objects).

Just as we have an option to disable garbage collection, we
can also disable RTSJ memory area support – in that case, stack
allocation is still enabled, but the runtime checks are significantly
optimized since the stack frame hierarchy is linear. Though we
have not experimented with stack allocation in applications, much
of our runtime and libraries is written using stack allocation. We
find it convenient in a number of respects. First, stack-allocated
objects cannot move, no matter the garbage collection style. Thus,
stack-allocated byte array, or example, may be passed to system
calls directly. Second, because stack-allocation can be enabled ad-
hoc with just an annotation, we found it easy to simply place
these annotations wherever we needed them – it required very little
planning and in most cases, the code just worked. By contrast, with
scoped memory, one has to first identify when and were to create
a scope, how to share it between threads, and how to allocate the
Runnable instance when entering it. None of these concerns exist
when using stack allocation.

2.2.3 Threading and Locking
Fiji VM’s threading and locking implementations are simple: we
pass all of the hard work to the underlying operating system. This
leads to a simple implementation; our entire threading and locking
implementation for both POSIX and RTEMS is under 6,000 lines
of C code. As well, the use of the operating system’s threading

implementation allows for natural multiprocessing support; Fiji
VM simply had multiprocessor support from the start.

2.3 Library Support
We currently support two different class libraries, with plans to
add a third. The three tier approach looks as shown in Fig. 4. The
largest library, with the most feature support is GNU Classpath.
Currently we use Classpath 0.97.2. With this library, we plan to
add the open-source Purdue RTSJ and SCJ (Safety Critical Java)
implementations [22]. For applications that still desire most of
Java’s features but want a smaller footprint, we offer FijiCore
along with the SCJ implementation. FijiCore is a library that we
are developing, and plan to release as open-source using the same
license as Classpath. It includes code from both Classpath and
OpenJDK [26], but is stripped down to be a slight superset of the
Java ME Connected Device Configuration. A further down-sized
library, called Fiji HardRTJ, will also be made available, which will
follow the Java ME Connected Limited Device Configuration with
some custom add-ons for real-time support. Currently, our FijiCore
library is large enough to run benchmarks like SPECjvm98, and we
use it as our main testing library. With this library, the footprint of
typical small programs ends up being approximately 700KB when
running on bare hardware; this includes the OS kernel, OS interface
libraries, FijiCore library, the user’s code, and global data.

In addition to supporting standard APIs, all Fiji VM libraries
support additional functionality such as stack allocation (discussed
in Sec. 2.2.2) as well as a low-level OS interface layer for writing
interrupt handlers in Java. This API allows, among other things,
pure heap-allocating Java code to run in bottom-half interrupt con-
text inside the operating system. See Fig. 5 for sample code. When
running in interrupt context, Java code may do any thing supported
by Java except:

• Locking. Attempting to lock throws an exception to prevent
deadlock.

• System calls. System calls are not allowed, and also throw an
exception. However, native calls that do not result in system
calls are allowed.

Additional APIs are provided for disabling and re-enabling in-
terrupts in a block-structured fashion, to allow for synchronization
between interrupt handlers and non-interrupt code. Note that on
multicore systems, these APIs would have to be used in conjunc-
tion with a either a spin-lock or the use of thread-processor affinity;
our APIs do not currently provide for either, but spin-locks can be
trivially implemented using compare-and-swap, which our APIs do
provide.

2.3.1 Portability
Fiji VM was designed with portability in mind, with support for
many flavors of operating system and a wide array of architectures.
Currently fVM can be executed on Linux, Darwin, NetBSD, and
RTEMS. We have also successfully deployed the fVM on a range
of architectures, including: x86, x86 64, ERC32, ARM, PowerPC,
SPARC, and LEON. RTEMS offers a wide selection of BSP sup-
port which we hope to leverage and deploy fVM on a larger set
of architectures. In particular, when running on RTEMS we lever-
age its already existing portability APIs, which enable us to run
on exotic architectures with little effort. For example, our SPARC,
ERC32, and LEON ports worked on the first try - we simply told
RTEMS to target the respective BSPs.

3. Evaluation
Fiji VM has a number of unique features, which we evaluate in this
section. Our evaluation covers four areas:

HotSpot 1.5

Server 32-bit

JavaRTS 2.2

Server 32-bit

JikesRVM

3.1.0

production

32-bit

JikesRVM

lastGreen

production

32-bit

JikesRVM

firstNative

production

32-bit

Fiji VM Opt

32-bit

Fiji VM Opt

32-bit SMM

Fiji VM Opt

32-bit SMM

50m trigger

0

2

4

6

8

compress jess db javac mpegaudio mtrt jack AVERAGE

Harmony Server
Fiji VM Real Time

Figure 6. Execution time in seconds of Fiji VM versus Apache Harmony
Server, after one iteration of execution. Lower numbers are better. Without
warm-up, Harmony is 24% slower than Fiji VM.HotSpot 1.5

Server 32-bit

JavaRTS 2.2

Server 32-bit

JikesRVM

3.1.0

production

32-bit

JikesRVM

lastGreen

production

32-bit

JikesRVM

firstNative

production

32-bit

Fiji VM Opt

32-bit

Fiji VM Opt

32-bit SMM

Fiji VM Opt

32-bit SMM

50m trigger

0

2

4

6

8

compress jess db javac mpegaudio mtrt jack AVERAGE

Harmony Server
Fiji VM Real Time

Figure 7. Execution time in seconds of Fiji VM versus Apache Harmony
Server after two warm-up iterations. Lower numbers are better. With warm-
up, Harmony performance improves by 30%; Fiji VM’s performance im-
proves by less than 1%. The lack of performance increase in Fiji VM is due
to our concern for determinism rather than raw throughput. After warm-up,
Harmony is 4% faster than Fiji VM.

1. Fiji VM’s performance versus an open-source server-class vir-
tual machine, to demonstrate the throughput of the Fiji VM.
We utilize the standard SpecJVM98 benchmark suite compar-
ing both cold and hot runs versus Apache Harmony Server.

2. Footprint. Fiji VM is an ahead-of-time compiler; this is some-
times thought to be an issue for systems in which memory
is limited since bytecode is often smaller than machine code.
Thus, we compare the size of the Fiji VM SPEC executable to
the size of the fastest embedded VM we know of: phoneME
Advanced MR2-b97 with JIT enabled.

3. Fiji VM’s ability to boot Java from bare hardware. In this test,
we use Fiji VM to create a boot CD out of the SPECjvm98
benchmark suite, and report performance results of running
SPECjvm98 on bare metal.

4. Interrupt handling. We show the results from a test in which
an interrupt handler that is written in Java allocates memory,
thus stressing the GC. We show the performance of the inter-
rupt handler with or without GC running in the background.
Additionally, we run this in an ERC32 simulator with 4MB of
RAM as an additional test of Fiji VM robustness.

No GC With GC
Max iteration duration 915µs 913µs
Average iteration duration 648µs 605µs
Number of iterations 932 5856

Table 1. Performance of Fiji VM when running an interrupt handler that
allocates memory. Note that there is virtually no difference between the
worst-case performance with or without GC running. In fact, the average
performance is a bit better when the GC is running; this is due to a slightly
different memory structure when collecting, which leads to faster alloca-
tion.

For (1), (2), and (3), we perform experiments on an 8-way
Xeon 2.33 GHz with 8GB of RAM, running Fedora Core 10. All
experiments were done with no other applications running. For (4),
we run on the ERC32 emulator that comes with RTEMS 4.9; the
emulator was running on the same machine as (1), (2), and (3).

3.1 Throughput
To evaluate the throughput of Fiji VM, we compare against Apache
Harmony Server VM revision 761593 using the SPECjvm98
benchmark suite. We choose Harmony because it is a well-known,
and reasonably well-understood, high-performance open source
Java virtual machine. Though we do not compare to other JVMs
(notably, we do not compare to other RT JVMs), we feel that in-
cluding a comparison to a well-known, publicly available VM al-
lows others to extrapolate a performance comparison to any other
JVM. We use the SPECjvm98 benchmark suite because of its pop-
ularity, and because the full suite is amenable to ahead-of-time
compilation (unlike Dacapo, in which only some benchmarks can
be run in an ahead-of-time system).

All experiments were run with all 8 cores enabled; in the case of
Fiji VM at most 3 cores were used (1 for the collector, and 2 for the
raytrace threads in the mtrt benchmark). In both VMs, we limit the
heap to 50MB, and as an additional test of Fiji VM’s capabilities,
we set the concurrent collector’s trigger at 10MB. This means that
in Fiji VM, the collector is always running.

The first experiment involved no warm-up. This is not an in-
teresting case for traditional VM throughput experiments, but it is
interesting for real-time applications, where cold-start times are im-
portant. The results are shown in Fig. 6. Notice that Harmony is
24% slower than Fiji VM in this case. The one benchmark where
Harmony is faster is db. This is due to two artifacts of Fiji VM’s
real-time support: heavy barriers and a simpler, more conservative
approach to locking. We have heavier barriers than Harmony since
fVM is running in our full real-time configuration, which includes
both GC store barriers and scope check barriers. Since db spends
most of its time manipulating complex data structures, this takes its
toll on performance. Additionally, db is a benchmark that makes
heavy use of the Java synchronized statement. While our imple-
mentation of synchronized is quite fast, it is not as fast as what
typically would be found in a non-real-time VM. This occurs be-
cause non-real-time VMs do not have to worry about the poten-
tially catastrophic performance of unfair locks and its impacts on
predictability. Thus, they are free to perform optimizations which
are unacceptable in a hard real-time setting. It is interesting to note
that Fiji VM significantly outperforms Harmony on mtrt, which is
the only parallel benchmark in the SPECjvm98 suite. We are not
sure what limitations in Harmony are preventing it from perform-
ing as well as Fiji VM, but we feel this result does suggest that Fiji
VM itself does not introduce impediments to scalability.

The second experiment involves two warm-up iterations and
is more typical of traditional throughput benchmarking. The first
warm-up iteration is a full one, the second one involves a 10%
execution of the benchmark. This gives Harmony the opportunity
to optimize the benchmarks more thoroughly. In this case, it beats

Figure 8. The GRUB menu used for booting SPECjvm98 from bare
hardware.

Figure 9. The SPECjvm98 jack benchmark running to completion on
bare hardware.

HotSpot 1.5

Server 32-bit

JavaRTS 2.2

Server 32-bit

JikesRVM

3.1.0

production

32-bit

JikesRVM

lastGreen

production

32-bit

JikesRVM

firstNative

production

32-bit

Fiji VM Opt

32-bit

Fiji VM Opt

32-bit SMM

Fiji VM Opt

32-bit SMM

50m trigger

0

2

4

6

8

compress jess db javac mpegaudio mtrt jack AVERAGE

Figure 10. Execution time in seconds of Fiji VM running on bare hard-
ware with the help of RTEMS 4.9. Lower numbers are better. Note that
our performance is slightly worse on bare hardware, for two reasons: first,
RTEMS 4.9 does not currently support SSE registers or instructions, and
second, RTEMS is uniprocessor, thus making it harder for multithreaded
programs to scale; in particular, the garbage collector ends up time-slicing
with the application as opposed to running on a separate processor. As a
result, performance on RTEMS is 10% worse than when running on Linux.

fVM by 5%. The fVM performance after warm-up is virtually
unchanged: the difference is less than 1%, while Harmony speeds
up by 30%. Again, db is the benchmark on which our performance
is the worst. These benchmark indicates that fVM is a stable,
consistent, real-time system capable of performance comparable to
that of a server-class production VM with no real-time support.

Page 1 of 1testhardrtj.java

Printed: 7 Jul 09 1:55:30 AM Printed For: Filip Pizlo

import com.fiji.hardrtj.*;

public class testhardrtj {

 static Integer[] array;

 static double cyclesPerMS;

 static class Stats {

 int iterations;

 long maxDuration;

 long[] durations=new long[1000];

 int durationI;

 void add(long duration) {

 iterations++;

 if (duration>maxDuration) {

 maxDuration=duration;

 }

 durations[durationI++]=duration;

 if (durationI==durations.length) {

 durationI=0;

 }

 }

 double max() {

 return maxDuration/cyclesPerMS;

 }

 double avg() {

 long sum=0;

 for (int i=0;

 i<Math.min(iterations,durations.length);

 ++i) {

 sum+=durations[i];

 }

 return sum

 / ((double)Math.min(iterations,durations.length))

 / cyclesPerMS;

 }

 void report() {

 System.out.println(" Number of iterations: "+iterations);

 System.out.println(" Max duration: "+max()+" ms");

 System.out.println(" Average duration: "+avg()+" ms");

 }

 }

 static Stats withoutGC = new Stats();

 static Stats withGC = new Stats();

 public static void main(String[] v) throws Throwable {

 System.out.println("Figuring out processor speed...");

 long beforeCPU=HardRT.readCPUTimestamp();

 long beforeOS=System.currentTimeMillis();

 Thread.sleep(1000);

 long afterCPU=HardRT.readCPUTimestamp();

 long afterOS=System.currentTimeMillis();

 System.out.println("Slept for "+(afterOS-beforeOS)+

 " ms according to OS.");

 System.out.println("Slept for "+(afterCPU-beforeCPU)+

 " cycles according to CPU");

 cyclesPerMS=((double)(afterCPU-beforeCPU))/(afterOS-beforeOS);

 System.out.println("Cycles per millisecond: "+cyclesPerMS);

 final Timer t=new Timer();

 t.fireAfter(10,new Runnable(){

 public void run() {

 long before=HardRT.readCPUTimestamp();

 if (array==null) {

 array=new Integer[2000];

 for (int i=0;i<array.length;++i) {

 array[i]=new Integer(i);

 }

 } else {

 for (int i=0;i<array.length;++i) {

 if (!array[i].equals(new Integer(i))) {

 throw new Error(

 "verification failed at i = "+i+".");

 }

 }

 array=null;

 }

 t.fireAfter(10,this);

 long after=HardRT.readCPUTimestamp();

 if (GC.inProgress()) {

 withGC.add(after-before);

 } else {

 withoutGC.add(after-before);

 }

 }

 });

 for (;;) {

 Thread.sleep(5000);

 System.out.println();

 System.out.println();

 System.out.println("ITERATIONS // NO GC:");

 withoutGC.report();

 System.out.println("ITERATIONS // WITH GC:");

 withGC.report();

 System.out.println("Total iterations: "+

 (withGC.iterations+withoutGC.iterations));

 System.out.println("Average WithGC/NoGC: "+

 (withGC.avg()/withoutGC.avg()));

 System.out.println("Average WithGC-NoGC: "+

 (withGC.avg()-withoutGC.avg())+" ms");

 }

 }

}

Figure 11. Source code for interrupt handling benchmark, the results of
which are shown in Tbl. 1.

3.2 Footprint
Code size is important for embedded systems. Thus, we compared
the size of the Fiji VM SPECjvm98 executable to the total code
size required to run SPECjvm98 on top of Sun phoneME Advanced
MR2-b97 with JIT enabled. The comparison is done with 32-bit
x86 Linux ELF executables.

For Fiji VM, the executable is standalone in the sense that it
only requires libraries that are standard on Linux (libc, libpthread,
and libm). The total size of this executable is 3,775,888 bytes. Note
that only about 200 KB of this is the Fiji VM runtime; the rest is
those parts of the standard library that are required to run SPEC,
and the code for SPEC itself.

For phoneME, we include the size of the cvm executable, the
sizes of the necessary shared libraries, and the size of the standard
library Jar file. Then we add the size of the SPECjvm98 bytecode.
Note that we exclude those class files that are obviously not needed
to run SPEC. The base footprint, without the SPEC bytecode,
is 2,865,771 bytes. With SPEC, the footprint is 3,714,564 bytes.
Thus, it is true that phoneME has a 1% size advantage – but we
feel that this is quite small when we consider that:

• phoneME can only run four of the SPEC benchmarks (compress,
mpegaudio, mtrt, jack) – and to run even those four bench-
marks, significant modifications to their code were required
due to missing features in phoneME. This suggests that Fiji
VM would be even smaller if we cut out those same features
that are excluded from phoneME.

• For those four benchmarks, phoneME is more than 2× slower
than Fiji VM on average.

• The full SPECjvm98 application is large. It is larger, in terms
of bytecode size, than the whole code of Fiji VM (compiler and
runtime) combined. The smaller the application, the smaller the
executable Fiji VM generates. For example, the SciMark 2.0a
benchmark only requires 824,396 bytes on Fiji VM, but nearly
3MB on phoneME.

That being said, bytecode is more compact than machine code
– so it is possible that for truly large applications (in the over 1
MLoC range), Fiji VM will generate code that is significantly larger
than the size of phoneME plus the bytecode size. For those cases
where size matters and the application is very large, it is likely that
Fiji VM will have to include a bytecode interpreter as well as an
ahead-of-time compiler in order to be practical. As well, such an
interpreter would enable class loading, which is a useful feature
for many other reasons. We are working on adding such features to
Fiji VM, however for the purpose of this report these features do
not exist yet.

3.3 SPECjvm98 on Bare Hardware
In this set of experiments, we told the Fiji VM compiler to com-
pile the Java code against RTEMS 4.9 for the pc386 BSP target,
and generate a boot CD ISO9660 image using GRUB [10] and
mkisofs. We burned a CD, and ran the tests by simply reboot-
ing the test machine. All of the SPEC benchmarks are selectable
via a GRUB menu. After running each benchmark, we rebooted
the machine, and then selected the next benchmark from the menu.

See Figs. 8 and 9 for screenshots that we took when repeating
this exercise in VMware. The GRUB menu is visible in Fig. 8.
Fig. 9 shows the output after the jack benchmark finishes running.

The performance of SPECjvm98 running on bare hardware is
shown in Fig. 10. Note that the performance in these tests is about
10% worse than when running on Linux, for two reasons. First,
RTEMS 4.9 does not have the kind of SMP support that we need; in
particular, it assumes that each processor is separate from the others
and communication only happens through a controlled fashion.

Though there is nothing preventing us from running Java on a
multiprocessor in this way, it is not compatible with the way that
benchmarks such as mtrt work – they expect full shared-memory
SMP. Thus, we run RTEMS 4.9 in a purely uniprocessor mode.
Second, the RTEMS 4.9 pc386 BSP does not yet support SSE2,
which we typically use on x86 to optimize floating point. The
inability to use SSE2 significantly slows down the mpegaudio and
mtrt benchmarks. Even so, this shows the ease with which vanilla
Java code can be run on bare hardware using Fiji VM.

3.4 Interrupt Handling in Java
For our third and final experiment, we wrote an interrupt handler
in Java. See Fig. 11 for the full source code listing. Once again we
compiled against RTEMS 4.9, but this time for the ERC32 target.
The test was structured as a garbage collection pathology to stress
test our concurrent real-time GC. We registered an interrupt handler
written in Java to trigger on receipt of a timer interrupt. Note that
this is a true bottom-half interrupt handler; when testhardrtj in
Fig. 11 calls Timer.fireAfter(), this bottoms out in the RTEMS
rtems timer fire after() function. In the interrupt handler,
we executed our pathological GC stress test which consists of a
allocating, populating, and verifying an array of Integer objects.
In the body of the loop we tested equality of each element of the
array with a newly allocated Java integer object. This test allocates
both large, in the case of the array, and very small, in the case of
the Integers, Java objects with varying lifetimes. Results for this
test are presented in Table 1 with the left most column depicting
performance without GC intervention and the right most when the
interrupt preempts the GC, and thus is running effectively concur-
rent to the GC. The time depicted in the table is measured over the
whole execution of the interrupt handler. Because of the high load
on the GC, the number of iterations when the GC was not run is a
fraction of those which the GC was triggered. However, the worst
case performance of both is almost identical, illustrating that our
concurrent real-time garbage collector introduces negligible over-
heads. The result is that fVM retains predictable behavior even in
the presence of programs with pathological allocation and memory
usage.

4. Related Work
There are currently six commercial Real Time Java implementa-
tions, and a number of open-source ones available. [3] and [27] are
perhaps most well-known of the bunch, and are widely regarded
as offering full compliance to the RTSJ specification. Two smaller
implementations also exist, [1] and [24], both of which claim to
offer RTSJ compliance. The aforementioned implementations all
have real-time garbage collection, though implemented in differ-
ent idioms (ranging from time-based to work-based, with varying
degrees of support for concurrency). Additionally, [19] and [4] of-
fer real-time support in their products, though this mostly implies
real-time garbage collection rather than other real-time features. Of
these systems, only [1] has support for deeply-embedded platforms.
To our knowledge none of the existing Real Time Java implemen-
tations have been shown to run vanilla Java code in the bottom half
of an operating system. Open source Real Time Java implemen-
tations include [22] and [14], though neither include the level of
Java compliance found in Fiji VM, or any of the other commercial
implementations.

Running Java, or other forms of managed code, in deeply em-
bedded environments is not new, if neither real-time support nor
performance are critical. [17] and [13] are both operating systems
written entirely in managed languages; C# and Java, respectively.
Unfortunately, neither offers real-time support. Also, [16], an inter-
preter based virtual machine, can run in deeply embedded environ-

ments, but not nearly at the same level of performance as Fiji VM,
or any of the other real-time VMs mentioned above.

5. Steps to Certification
Fiji VM is designed for use in systems that are certified to DO-
178B level A. We feel that the simple design of the VM (notably,
no class loading or dynamic compilation) make this possible. In
particular, the manner in which code is compiled by Fiji VM, as
shown in Fig. 1, is significantly simpler than what would be found
in any other high-throughput system. The compiler is only roughly
40 KLoC, which includes complete self-verification phases; code
is not emitted if these phases detect that any optimization has
violated Java’s safety properties. Furthermore, we believe that in
the future we will be able to use the type system of Fiji VM’s
internal representation, as well as the flow analyses currently used
for certification, to autogenerate certification artifacts. That being
said, the compiler itself would need to be certified to be used in true
safety-critical systems. Whether or not this would require certain
optimization phases to be disabled is yet to be seen. The modular
architecture of the Fiji VM compiler makes this easy to do – thus,
we do not believe that any architectural decisions we have made
will impede the certification process.

The harder part of certification will be the Fiji VM runtime.
Whether or not a garbage collector will ever be used in a certified
system is still unclear. However, in Fiji VM it is possible to turn the
collector off; in that case, the runtime is nothing more than a thin
glue layer that connects the Java library’s notions of threading, and
Java bytecode’s notions of locking, to the facilities provided by the
operating system kernel.

6. Conclusion
We have developed a new Java virtual machine, fVM, targeted at
hard real-time and safety-critical systems. The Fiji VM is a full
fledged Java virtual machine capable of running on bare hardware
and expressing interrupt handlers in pure Java. It supports a concur-
rent real-time garbage collector and a host of standard libraries. The
fVM has been successfully deployed on an array of architectures,
ranging from ERC32 to x86. Even with full real-time support fVM
performs comparably to server-class production VMs on standard
Java benchmarks.

References
[1] AONIX, PERC Products,

http://www.aonix.com/perc.html, 2009.

[2] A. ARMBUSTER, J. BAKER, A. CUNEI, D. HOLMES, C. FLACK,
F. PIZLO, E. PLA, M. PROCHAZKA, AND J. VITEK, A Real-time Java
virtual machine with applications in avionics, ACM Transactions in
Embedded Computing Systems, 2007.

[3] J. AUERBACH, D. F. BACON, B. BLAINEY, P. CHENG, M. DAWSON,
M. FULTON, D. GROVE, D. HART, AND M. STOODLEY, Design and
implementation of a comprehensive real-time Java virtual machine, in
Conference on Embedded software (EMSOFT), 2007.

[4] AZUL SYSTEMS, http://www.azulsystems.com/

[5] D. F. BACON, R. KONURU, C. MURTHY, Thin Locks: Featherweight
Synchronization for Java, in PLDI 1998.

[6] J. BAKER, A. CUNEI, T. KALIBERA, F. PIZLO, J. VITEK, Accurate
garbage collection in uncooperative environments revisited. In
Concurrency: Practice and Experience 2009.

[7] S. BLACKBURN, K. MCKINLEY, Immix: A Mark-Region Garbage
Collector with Space Efficiency, Fast Collection, and Mutator
Performance, in PLDI 2008.

[8] G. BOLLELLA, J. GOSLING, B. BROSGOL, P. DIBBLE, S. FURR,
AND M. TURNBULL, The Real-Time Specification for Java, Addison-
Wesley, 2000.

[9] FREE SOFTWARE FOUNDATION, GNU Classpath,
http://www.gnu.org/software/classpath/

[10] FREE SOFTWARE FOUNDATION, GNU GRUB,
http://www.gnu.org/software/grub/

[11] F. HENDERSON, Accurate Garbage Collection in an Uncooperative
Environment, in ISMM 2002.

[12] JIKES RVM, http://jikesrvm.org/

[13] JNODE.ORG, JNode: Java New Operating System Design Effort,
http://www.jnode.org/

[14] JRATE, http://jrate.sourceforge.net/

[15] JSR 302, Safety critical Java technology, 2007.

[16] R. LOUGHER, JamVM – A compact Java Virtual Machine,
http://jamvm.sourceforge.net/

[17] MICROSOFT CORPORATION, Singularity,
http://research.microsoft.com/en-us/projects/singularity/

[18] OAR CORPORATION, RTEMS Home Page, http://www.rtems.org/

[19] ORACLE CORPORATION, Overview of WebLogic Real Time 2.0,
edocs.bea.com/wlrt/docs20/intro wlrt/intro.html

[20] F. PIZLO, D. FRAMPTON, E. PETRANK, B. STEENSGAARD.,
Stopless: a real-time garbage collector for multiprocessors. in ISMM
2007.

[21] F. PIZLO, J. VITEK, An empirical evalutation of memory management
alternatives for Real-time Java, in Real-Time Systems Symposium
(RTSS), Dec. 2006.

[22] PURDUE, The Ovm virtual machine, www.ovmj.org.

[23] PURDUE, Purdue Researchers Participate in Development of ScanEa-
gle UAV, cs.purdue.edu/news/1-12-06scaneagle.htm

[24] F. SIEBERT, Realtime Garbage Collection in the JamaicaVM 3.0, in
JTRes 2007.

[25] F. SIEBERT, Real-time garbage collection in multi-threaded systems
on a single processor, in Real-Time Systems Symposium (RTSS),
1999.

[26] SUN MICROSYSTEMS, OpenJDK, http://openjdk.java.net/

[27] SUN MICROSYSTEMS, Sun java real-time system,
java.sun.com/javase/technologies/realtime/, 2008.

[28] J. VITEK, R. HORSPOOL, A. KRALL., Efficient type inclusion tests,
in OOPSLA 1997.

	1 Introduction
	1.1 Background

	2 Fiji VM Design
	2.1 Fiji VM Compiler
	2.1.1 Dangers of generating C from Java bytecode
	2.1.2 Garbage collection and scoped memory support
	2.1.3 High-level optimization
	2.1.4 Object model
	2.1.5 Type inclusion and interface dispatch

	2.2 Fiji VM Runtime
	2.2.1 Garbage Collection
	2.2.2 Stack Allocation
	2.2.3 Threading and Locking

	2.3 Library Support
	2.3.1 Portability

	3 Evaluation
	3.1 Throughput
	3.2 Footprint
	3.3 SPECjvm98 on Bare Hardware
	3.4 Interrupt Handling in Java

	4 Related Work
	5 Steps to Certification
	6 Conclusion

