Efficient Mark-Sweep

Filip Pizlo
Apple

Efficient Mark-Sweep

e |ntroduction
o Why mark-sweep?

» Algorithm
e Simple Segregated Storage
e Bump'n'pop
* (Constraint-Based Marking
« Parallel “Draining”
» Sticky Mark Bits
* (Conservative Roots

* Fragmentation Mitigations

lNtroauction

Iracing

 An objectis live If it is transitively reachable from
roots

* Roots = registers, stack, global variables

e [ranstive reachabillity = graph search over
references between objects

Two Main Types of GC

 Mark-Sweep

 Copying

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

O(#live + #dead)
'

Copying:

Mark-Sweep:

O(#live + #dead)
'

Copying:

O(#live)

» Copying is an optimization for avoiding sweeping.

» Copying also reduces fragmentation.

* |s copying the only way to avoid sweeping?

* Does copying save space?

e YOUu can avoid sweeping without copying.

* Find large free regions and bump-allocate In
them.

¢ See:
e Blackburn and McKinley PLDI'O8

e Berger, Zorn, and McKinley OOPSLA'02

* Fragmentation is not a big problem in practice.
 Assuming you have:
e 48-bit address space

* Mitigations

1.2

GISS-MS -8
IS

1.15 N — GISS-IX —®— -
3 GIIX-IX —a—

11 :i X SNV T .

N
L .
e B
~ 1
~
-~
~

1.05 [s

Normalized Time

1 2 3 4 5 6
Heap size relative to minimum heap size

(¢) Immix Variants

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

1.2

GISS-MS -8

N |
115 F A} R GISS-IX —a—<«=—C0pying

GlIX-IX —a—s

N
-
S~

: \
1
_ s i |
T\ |\~
L . L _
. n 1 ‘

~~
=~ 1
~
~

1.05 BEINT o s

Normalized Time

1 2 3 4 5 6
Heap size relative to minimum heap size

(¢) Immix Variants

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

1.2

i GISS-MS -

VI — |
© 445 k| . GISS-IX —m— «——Copying
= GIIX-IX —a—i« |
- | : . [™~"Non-copying
GND 1.1 5 ' \\\;:-~--- ”””””””””””””””””””””””””” -
s o P e S
& ‘) T
5 105 ‘RANDO. :
Z S N VI Y

1 ,,, _

1 2 3 4 5 6
Heap size relative to minimum heap size

(¢) Immix Variants

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

1.2

i GISS-MS -
Y I — |
© 445 k| T GISS-IX —m— «=—C0pying
= GIX-IX —a—iw .
- | : . [™~"Non-copying
GND 1.1 : : \\\;:-~--- ”””””””””””””””””””””””””” n
© :)'(AP S
& ‘) T
5 105 ‘RANDO. :
Z i N T T

1 2 3 4 5 6
Heap size relative to minimum heap size

(¢) Immix Variants

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

1.2

i GISS-MS -

MS -ooeeens .
© 445 k| R GISS-IX —=—«——C0pying
= GIIX-IX —a—iw .
- : . ™Non-copying
N 1.1 S -
T T T
c ‘)
5 105 kAN :

1 2 3 4 5 6

707
Heap size relative to minimum heap size

(¢) Immix Variants

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

* You don't need copying to avoid sweeping.

 Copying does not save space.

 We want concurrency.

Reference Write Barrier
0% overhead

Reference Write Barrier
0% overhead

Reference Read Barrier
> 1% overhead
cross-cutting VM changes

Universal Write Barrier
forwarding pointer in header
observable

Collector Type

Barrier Overhead

Generational

Reference Write Barrier
0% overhead

Concurrent Marking

Reference Write Barrier

0% overhead

Concurrent Copying
with To-Space Invariant

> 1% overhead

cross-cutting VM changes

Concurrent Copying
with From-Space Invariant

Universal Write Barrier
forwarding pointer in header
observable

Copying Makes Everything
Harder

Harder to write native code.
Compiler has more to worry about.
Hashing is harder.

Debugging VM bugs is more “exciting”.

* Not having copying enables efficient concurrent
GC.

 Not having copying makes my team more
oroductive.

« How much taster is copying?
* 0% faster

* Does it save space?
e not really

« How much long-term maintenance cost does it
incur?

e everything is harder

Why mark-sweep”

Why mark-sweep”

Because it's easier and not any worse.

Algorithm

* Huge shout out:
 Boehm-Demers-Weiser GC
 Qur GC is heavily influenced by the BDW algorithm.

 Our GC is an independent implementation of that
algorithm, with major extensions:

e Some for performance.
* Some to support VM features.

e [his makes direct perf comparison impossible.

Algorithm

Simple Segregated Storage
Bump'n'pop
Constraint-Based Marking
Parallel "Draining”

Sticky Mark Bits
Conservative Roots

Fragmentation Mitigations

Algorithm

e Simple Segregated Storage

e Parallel "Draining”
o Sticky Mark Bits
e Conservative Roots

 Fragmentation Mitigations

Simple Segregated
Storage

Free List per Size Class
(Segregated Free Lists)

Free List per Size Class
(Segregated Free Lists)

16KB blocks of same-size
objects and a header

Free List per Size Class
(Segregated Free Lists)

16KB blocks of same-size
objects and a header

Global HashSet of blocks

Free List per Size Class
(Segregated Free Lists)

16KB blocks of same-size
objects and a header

Global HashSet of blocks

16KB blocks of same-size
objects and a header

Free List per Size Class
(Segregated Free Lists)

16KB blocks of same-size
objects and a header

Global HashSet of blocks

16KB blocks of same-size
objects and a header

Blocks can switch size classes
when they are empty

16 byte

32 byte

04 byte

16 byte

32 byte

04 byte

16 byte

32 byte

04 byte

16 byte

32 byte

04 byte

16 byte

32 byte

04 byte

16 byte

32 byte

04 byte

32 byte

04 byte

32 byte

04 byte

32 byte

04 byte

32 byte

04 byte

32 byte

04 byte

32 byte

04 byte

32 byte

04 byte

32 byte

04 byte

32 byte

04 byte

32 byte

04 byte

32 byte

04 byte

32 byte

04 byte

32 byte

04 byte

666666

Header contains: * gjze class
* mark bits
* marking version
* occupancy count

Simple Segregated Storage

* Free list per size class

 Fach 16KB block belongs to one size class

 Each block can self-identify size class
* Blocks maintain marking state

e Global HashSet of blocks

BUuMp N pop

Building free-lists is expensive

Building free-lists is expensive
Easily doubles cost of allocating small objects

* Have to check each mark bit
e Our mark bits are super compact
e [his is as cheap as it gets
e But its still not free!

 Have to build linked list

e Jouch 16KB

Completely
Empty

“—
K

——>

Fragmented

Completely
Full

Eedd

Completely Completely
ity Fragmented =
-

K

——>

Eedd

Super Common

Completely Completely
ity Fragmented =
-

K %

Super Common
High Infant Mortality

Completely Completely
Empty Fragmented =
Rt
K %

Super Common Fairly Common

High Infant Mortality

Completely Completely
Empty Fragmented =
= %

Super Common Fairly Common

High Infant Mortality

Objects Allocated Together Have Similar Lifetimes

Completely Completely
ity Fragmented =
-

AZ

——>

Eedd

Super Common Uncommon Fairly Common
High Infant Mortality

Objects Allocated Together Have Similar Lifetimes

Completely 90%
Empty Fragmented Ul

Bl

Super Common Uncommon Fairly Common
High Infant Mortality

“—
AZ

——>

Objects Allocated Together Have Similar Lifetimes

markingNotEmpty: | 0 | 1 | 1

GC rapidly identifies empty blocks

markingNotEmpty: | 0 | 1 | 1

GC rapidly identifies empty blocks
No need to scan mark bits of empty blocks

markingNoteEmpty: | 0 | 1 | 1

GC rapidly identifies empty blocks
No need to scan mark bits of empty blocks

markingNoteEmpty: | 0 | 1 | 1

begin —

end —

GC rapidly identifies empty blocks
No need to scan mark bits of empty blocks

markingNotEmpty: | O 1]

begin —

end —

GC rapidly identifies empty blocks
No need to scan mark bits of empty blocks
Empty blocks use bump allocator

bump 'N'pPop

markingNotEmpty: | 0 | 1 | 1

GC rapidly identifies empty blocks
No need to scan mark bits of empty blocks
Empty blocks use bump allocator

Simple segregated storage assumes
that all objects in a block have the
same size.

Our bump allocator preserves this.

Allocation Algorithm

1. Round up allocation size to size class
2. Allocate using size class’s size
| First try bump

Il. Then try pop

template<typename Func>
HeapCell* FreelList::allocate(const Func& slowPath)

{

template<typename Func>
HeapCell* FreelList::allocate(const Func& slowPath)

{

unsigned cellSize = m_cellSize;

template<typename Func>
HeapCell* FreelList::allocate(const Func& slowPath)

{

unsigned cellSize = m_cellSize;

FreeCell* result = head();

m_scrambledHead = result->scrambledNext;

template<typename Func>
HeapCell* FreelList::allocate(const Func& slowPath)

{

unsigned cellSize = m_cellSize;

FreeCell* result = head();

m_scrambledHead = result->scrambledNext;

bump’n’pop uses scrambled free-lists

template<typename Func>
HeapCell* FreelList::allocate(const Func& slowPath)

{

unsigned cellSize = m_cellSize;

FreeCell* result = head();

m_scrambledHead = result->scrambledNext;

bump 'n’pop uses scrambled free-lists
scrambled free-lists haven't shipped yet!

1D

!-!. outterfly pointer y pointer r®x31337c®defefebowldbeefaa |

o Scramble the freelist with a per-freelist secret.

* Select a new secret every time we build a
freelist.

e Bu
OU
N0

MP’'N'POoP IS as fast as our previous copying
Mmp allocator, and faster than our previous

0-only allocator.

 We also tried concurrent sweeping. Bump'n'pop
was faster.

 We also tried concurrent sweeping with

olving
OUIM

o'n’
o'n’

00
00

0.
0.

It wasn't any better than just

bump 'N'pPop

* Empty blocks don't scan mark bits.

* Empty blocks don't build free lists.

* 90% full blocks are treated as if they were full.

Constraint-Based
Marking

Constraint-Based Marking

e [ransitive reachabillity is not always enough
« Common examples:
o SOft references

 Weak map

Constraint-Based Marking

e [ransitive reachabillity is not always enough
e WebKit examples:

* Type inference

 Weak map

« DOM

e Native code

Constraint-Based Marking

e [ransitive reachabillity is not always enough

o WebKit examples:

<~ Type inference>

 Weak map

« DOM

e Native code

Constraint-Based Marking

e [ransitive reachabillity is not always enough
o WebKit examples:

<~ Type inference>

 Weak map

/' DOM h

 Native code
_ /

Type Inference

Structure .
e

Obijects ./ .

S th/s a weak reference?
e
.\

JIT code references a
Structure

e Strong reference?
* Weak reference”

* Marking constraint?

Strong reference”

@ o®
@

./
. ®

Strong reference”

JIT code

\ prototype

global
object

Strong reterence”

Strong reterence”

SO many leaks

Weak reference”

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
RN

@
. ®

Weak reference”

JIT code

prototype

Weak reference”

I)

1
. JIT code
Y q

prototype

Weak reference?”

recomp storm

Marking Constraint

JIT

rototype
code St

structure
T, global

object

Marking Constraint

JIT

rototype
code RSO

structure
T, global

object

* JIT code reterences the structure weakly.

Marking Constraint

1f (isMarked(structure->globalObject())
&& 1sMarked(structure->storedPrototype()))
mark(structure);

JIT

tot
code prototype

...
TA

structure
T, global

object
* JIT code reterences the structure weakly.

e JIT code also registers the above marking
constraint.

Marking Constraint!

JIT code

prototype

{x, y}

I global
object

{1, 2}

{42, 3}
9, 7}

Marking Constraint!

JIT code

prototype

global
object

Marking Constraint!

JIT code

prototype

lt's cool - the prototype and global object are long-lived.

Marking Constraint!

JIT code

Marking Constraint!

I)

1
. JIT code
Y q

Marking Constraint!

I)

1
. JIT code
Y q

We want the JIT code to die in this case.

Marking Constraint!

* |[f the objects that use the structure die, then:

« Keep structure alive If the user objects it points
to are alive anyway.

» Kill the structure (and the JIT code) if keeping
it alive would not be safe-for-space.

Marking Constraints

» Constraints can query which objects are
marked.

e Constraints can mark objects.

 GC executes constraints to fixpoint.

Native Code

Including the DOM

Native Code

bar

"~ JUSHeap

—>
foo

thingy

Native Heap
blah

—--—-----------------.
.---------------------‘

Native Code

‘—--_-----------------.~ ‘—--_ -------------------

Native Heap e .’ JS Heap

blah —

Ul toolkit

. some native\ . /

N | 4 N L
--

Native Code

IIIIIIIIIIIIIIIIIIIIIIIIII

o’ w M

2)}
. =0 '
" =3
X Ob "
" - O 1
I pw "
" ! % .
'3 3 = :
"H / :
| (@) 1
HB 1 2 :
“ "

) 3

\ ¢_
! [|
. |
. |
! |
. |
" > !
; & @) I
s = :
"H \ i "
1 O e) .
2 m > 4o .
1 = =

2 = m
" < 3 .
_ n_muf. :
| — 1
. S = '
\} ¢ ’
él \\

Native Code

‘—--_-----------------.~ ‘—--_ -------------------

Native Heap Ky '/ JS Heap
+ . JSevent

—>
bar

. some native\ /

Ul toolkit .- :
thingy y ! JS proxy for
\\ Ul object

N | 4 N L
--

Native Code

bar

"~ JUSHeap

—>
foo

thingy

Native Heap
blah

—--—-----------------.
.---------------------‘

Strong Reterence”

‘—--_-----------------.~ ‘—--_ -------------------

L 4 N L 4

Strong Reterence”

‘—--_-----------------.~ ‘—--_ -------------------

L 4 N L 4

Strong Reterence”

‘—--_-----------------.~ ‘—--_ -------------------

L 4 N L 4

Strong Reterence”

‘—--_-----------------.~ ‘—--_ -------------------

L 4 N L 4

Strong Reterence”

‘—--_-----------------.~ ‘—--_ -------------------

thingy ,\ii\
Edestroyed by fo0’s finalizer,é |
SO live '

N | 4 N L
--

Strong Reterence”

‘—--_-----------------.~ ‘—--_ -------------------

thingy

0]0)

Edestroyed by fo0’s finalizer,é |
' so live ro

N | 4 N L
--

Weak Reference”

‘—--_-----------------.~ ‘—--_ -------------------

L 4 N L 4

Weak Reference”

‘—--_-----------------.~ ‘—--_ -------------------

Native Heap Ky '/ JS Heap

blah

N | 4 N L
--

Weak Reference”

‘—--_-----------------.~ ‘—--_ -------------------

Native Heap Ky '/ JS Heap

blah
bar dies premturely

N | 4 N L
--

Marking Constraint!

‘—--_-----------------.~ ‘—--_ -------------------

if (isMarked(foo))
mark(bar)

N | 4 N L
--

Marking Constraints

 GC executes constraints to fixpoint.
o Useful for implementing:

* [ype Inference

 \Weak Maps

« DOM

 Native Code

 The most expensive marking constraint is
draining.

 Draining = graph search over strong references
between objects.

Parallel Draining

Parallel Draining

 CAS loop to set mark bits
 Handful of WTF locks

e WWork donation

mark
stack

heap

roots

mark
stack

heap

roots

mark
stack

heap

roots

mark
stack

heap

roots

mark
stack

heap

roots

mark
stack

heap

roots

mark
stack

heap

roots

mark
stack

heap

roots

mark mark

heap

stack stack

roots

mark mark

heap

stack stack

roots

mark mark

heap

stack stack

mark mark

heap

stack stack

mark mark

heap

stack stack

roots

Parallel Draining

e Donate work to global mark stack when we
detect fan-out.

o Stalled threads take 1/N of the global mark
stack.

Detecting Fan-out

 Once every 100 objects visited, check it it's
"WelgigWelelgt-ilale]

* Only donate if the global mark stack is empty
and nobody holds the lock.

e Donate about half of local mark stack.

Parallel Draining

Sticky Mark Bits

n most cases, young o

njects are much more

Ikely to die than old obj

ects.

Generational GC

« Sticky Mark Bits = Generational GC without copying

We know that the object is young because of its address.

We know that the object is old because of its address.

 Traditional GenGC uses address to encode generation.

* \We can just as easlly use some bits in the object header.

Sticky Mark Bits

 Each object has a GC byte that tells us the
generational state:

e New
e Remembered

* Old

e Mark bits are not reset at the start of eden
collections.

o->f1ield = p
1f (o->cellState() == 0ld)
remember(o); // state becomes Remembered

Sticky Mark Bits

* Generational GC without copying.

e /ero-cost write barrier.

e Essential for throughput.

Conservative Roots

Native code uses handles

Compiler isolates pointers
Theoretically less object drag
Pain in the butt

Native code uses raw pointers
Compiler treats pointers as integers
Possibly more object drag
Mark pinning
Super easy

Native code uses handles

Compiler isolates pointers
Theoretically less object drag
Pain in the butt

Native code uses raw pointers
Compiler treats pointers as integers
Possibly more object drag

Mark pinning
Super easy

s this really a thing”

« Conservative object drag totally was a thing.

 We mitigated conservative object drag:
e 48-bit address space

 ASLR

e Stack sanitization

* See here for more sweet mitigations:
http://www.hboehm.info/gc/

Fragmentation
Mitigation

* Most of WebKit's heap is malloc memory
allocated by the DOM and HTML/CSS/SVG

rendering code.

* malloc mitigates fragmentations by modeling
first-fit.

e Not moving objects is the norm on desktop
systems.

-ragmentation Mitigations

e Simulate first-fit
 Coalesce and split

e 48-bit address space

Efficient Mark-Sweep

Simple Segregated Storage
Bump'n'pop
Constraint-Based Marking
Parallel "Draining”

Sticky Mark Bits
Conservative Roots

Fragmentation Mitigations

