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Introduction



Tracing



• An object is live if it is transitively reachable from 
roots



• Roots = registers, stack, global variables 

• Transtive reachability = graph search over 
references between objects



Two Main Types of GC

• Mark-Sweep 

• Copying
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• Copying is an optimization for avoiding sweeping. 

• Copying also reduces fragmentation.



• Is copying the only way to avoid sweeping? 

• Does copying save space?



• You can avoid sweeping without copying. 

• Find large free regions and bump-allocate in 
them. 

• See: 

• Blackburn and McKinley PLDI’08 

• Berger, Zorn, and McKinley OOPSLA’02



• Fragmentation is not a big problem in practice. 

• Assuming you have: 

• 48-bit address space 

• Mitigations
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(c) Immix Variants

Figure 6. Generational Collector Performance on Core 2 Duo. Geometric Mean of 20 DaCapo and SPEC Benchmarks.

original by is that we use an efficient object-remembering bar-
rier [16] to identify modified mature objects rather than page pro-
tection and card marks. Our collectors are trivial extensions over
their canonical full heap counter-parts. An early implementation of
Jikes RVM had an in-place generational collector which did not use
sticky mark bits, but stored extra state on the side. In Attanasio et
al.’s garbage collector review [6], they mention this collector, but do
not evaluate it. Domani et al. [23] build and evaluate an on-the-fly
generational collector using the sticky mark bits algorithm. Aside
from these collectors, we are unaware of in-place generational col-
lection finding use outside of the conservative setting of Demmers
et al.’s work, where a sticky mark bit collector is the only way to
achieve generational scavenging since copying is not possible.

Figure 6(b) shows that each of these in-place collectors im-
proves over the canonical algorithms in tighter heaps with mini-
mal degradation in large heaps. In particular, G|IX-IX almost uni-
formly improves over IX. However, G|MS-MS does not improve
sufficiently over MS to justify its use, given the option of a regu-
lar copying generational collector. In Figure 6(c), we see G|IX-IX
compared to the other immix collectors and Jikes RVM’s produc-
tion collector (G|SS-MS). These results show that G|IX-IX per-
forms very competitively. Since in-place generational collection is
trivial to implement, and unlike composites with evacuating nurs-
eries, does not detract from the mostly non-moving properties of
immix, the in-place immix collector may have interesting applica-
tion opportunities.

Columns 6, 7 and 8 of Table 2 show a performance slice at a
1.5⇥ heap for the mark-sweep and immix in-place collectors, with
results normalized to Jikes RVM’s production collector, G|SS-MS.
Here we include two variants on G|IX-IX: G|IX-IX will oppor-
tunistic evacuate during nursery collections as well as during de-
fragmentation, while G|IX-IXnm will only opportunistically evacu-
ate during defragmentation time. We found that these two variants
performed about the same. We spent more time tuning this collector
than we did G|SS-IX, but it remains a fairly naive implementation,
and similar to G|SS-IX, can likely be improved.

The result of the experiment with in-place generational collec-
tion highlights the importance of significantly improving the per-
formance of the full heap algorithm. While the mark-sweep in-
place collector is ‘interesting’ and perhaps useful in a conservative
collection context, changing the base from mark-sweep to immix
transforms the idea into a serious proposition for a performance-
oriented setting.

5.4 Understanding Immix Performance
Each of the preceding sections and Figure 6(c) show how the immix
achieves all three goals: space efficiency (Figure 5), fast collection
(Figure 3(f)) and mutator performance (Figure 3(d)). This section
examines the individual features and policy sensitivities presented
in Tables 3 and 4.

Block Utilization To understand immix’s allocation behavior,
columns 2–6 of Table 3 show how allocation was distributed among
blocks, in terms of the fullness of the blocks. At the nominal 2⇥
heap size, immix allocates 79% of data into completely free or
mostly free blocks (< 25% marked), on average across our bench-
mark suite. Only occasionally, always less than 5%, does immix
allocate into mostly full blocks with > 75% marked. We also mea-
sured how these statistics vary with heap size. Immix allocates
more from recyclable blocks in small heaps than large. For exam-
ple, compared to 43% of allocation to completely free blocks at
2⇥ heap size, immix allocates 76% at a 6⇥ heap size. This trend
is because more frequent collection tends to fragment the heap
more; given longer to die more objects die together, whereas more
frequent collection exposes more differences in object lifetimes.

Overflow Allocation We found overflow allocation helps provide
space efficiency in tight heaps. Column 7 of Table 3 shows the per-
cent of objects that immix sends to the overflow allocator. On aver-
age, it handles 4% of allocation, however jython and xalan are con-
spicuous outliers. Column 5 of Table 4 shows the performance ef-
fect of turning off the overflow allocator mechanism. Three bench-
marks, antlr, jython and lusearch, benefit from this mechanism,
and xalan is slowed down by overflow allocation. Note however,
that the memory savings associated with a given use of the over-
flow allocator may vary widely, depending on the size of pending
allocation and the level of fragmentation of the recycled blocks.

Importance of Blocks, Lines, and Defragmentation Columns 2
and 3 of Table 4 show performance for mark-region collectors that
provide just block marking (block); block and line marking with
overflow allocation, but without defragmentation (No DF); block,
line, overflow, and defragmentation with no head room (No HR);
everything but overflow allocation (No Ov). Some benchmarks
perform remarkably well, while others are unable to run at all in
a 2⇥ heap. In columns 8, 9 and 10 of Table 3, we show the amount
of ‘dark matter’ due to imprecise marking. Column 8 shows the
imprecision overhead of marking only at a block grain, column 9
shows the overhead for line marking, and column 10 shows the
overhead due to conservative line marks. We express overhead as
a percentage of the actual bytes live at each collection, so a 100%
overhead means marking was imprecise by a factor of two. If the
collector only recycled blocks (block), block fragmentation would
lead to it on average inflating the amount marked by 93% (nearly
double). However, for some benchmarks such as db, compress

and jython, a naive block-grain marking scheme is remarkably
effective. If the system used line marking (line), but still did not
perform defragmentation, waste would inflate the amount marked
by 23% on average. We also measured the memory wasted due to
conservative marking. A few benchmarks, such as javac and fop

waste 25 to 20%, but most benchmarks waste less than 6%.

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf
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Figure 6. Generational Collector Performance on Core 2 Duo. Geometric Mean of 20 DaCapo and SPEC Benchmarks.

original by is that we use an efficient object-remembering bar-
rier [16] to identify modified mature objects rather than page pro-
tection and card marks. Our collectors are trivial extensions over
their canonical full heap counter-parts. An early implementation of
Jikes RVM had an in-place generational collector which did not use
sticky mark bits, but stored extra state on the side. In Attanasio et
al.’s garbage collector review [6], they mention this collector, but do
not evaluate it. Domani et al. [23] build and evaluate an on-the-fly
generational collector using the sticky mark bits algorithm. Aside
from these collectors, we are unaware of in-place generational col-
lection finding use outside of the conservative setting of Demmers
et al.’s work, where a sticky mark bit collector is the only way to
achieve generational scavenging since copying is not possible.

Figure 6(b) shows that each of these in-place collectors im-
proves over the canonical algorithms in tighter heaps with mini-
mal degradation in large heaps. In particular, G|IX-IX almost uni-
formly improves over IX. However, G|MS-MS does not improve
sufficiently over MS to justify its use, given the option of a regu-
lar copying generational collector. In Figure 6(c), we see G|IX-IX
compared to the other immix collectors and Jikes RVM’s produc-
tion collector (G|SS-MS). These results show that G|IX-IX per-
forms very competitively. Since in-place generational collection is
trivial to implement, and unlike composites with evacuating nurs-
eries, does not detract from the mostly non-moving properties of
immix, the in-place immix collector may have interesting applica-
tion opportunities.

Columns 6, 7 and 8 of Table 2 show a performance slice at a
1.5⇥ heap for the mark-sweep and immix in-place collectors, with
results normalized to Jikes RVM’s production collector, G|SS-MS.
Here we include two variants on G|IX-IX: G|IX-IX will oppor-
tunistic evacuate during nursery collections as well as during de-
fragmentation, while G|IX-IXnm will only opportunistically evacu-
ate during defragmentation time. We found that these two variants
performed about the same. We spent more time tuning this collector
than we did G|SS-IX, but it remains a fairly naive implementation,
and similar to G|SS-IX, can likely be improved.

The result of the experiment with in-place generational collec-
tion highlights the importance of significantly improving the per-
formance of the full heap algorithm. While the mark-sweep in-
place collector is ‘interesting’ and perhaps useful in a conservative
collection context, changing the base from mark-sweep to immix
transforms the idea into a serious proposition for a performance-
oriented setting.

5.4 Understanding Immix Performance
Each of the preceding sections and Figure 6(c) show how the immix
achieves all three goals: space efficiency (Figure 5), fast collection
(Figure 3(f)) and mutator performance (Figure 3(d)). This section
examines the individual features and policy sensitivities presented
in Tables 3 and 4.

Block Utilization To understand immix’s allocation behavior,
columns 2–6 of Table 3 show how allocation was distributed among
blocks, in terms of the fullness of the blocks. At the nominal 2⇥
heap size, immix allocates 79% of data into completely free or
mostly free blocks (< 25% marked), on average across our bench-
mark suite. Only occasionally, always less than 5%, does immix
allocate into mostly full blocks with > 75% marked. We also mea-
sured how these statistics vary with heap size. Immix allocates
more from recyclable blocks in small heaps than large. For exam-
ple, compared to 43% of allocation to completely free blocks at
2⇥ heap size, immix allocates 76% at a 6⇥ heap size. This trend
is because more frequent collection tends to fragment the heap
more; given longer to die more objects die together, whereas more
frequent collection exposes more differences in object lifetimes.

Overflow Allocation We found overflow allocation helps provide
space efficiency in tight heaps. Column 7 of Table 3 shows the per-
cent of objects that immix sends to the overflow allocator. On aver-
age, it handles 4% of allocation, however jython and xalan are con-
spicuous outliers. Column 5 of Table 4 shows the performance ef-
fect of turning off the overflow allocator mechanism. Three bench-
marks, antlr, jython and lusearch, benefit from this mechanism,
and xalan is slowed down by overflow allocation. Note however,
that the memory savings associated with a given use of the over-
flow allocator may vary widely, depending on the size of pending
allocation and the level of fragmentation of the recycled blocks.

Importance of Blocks, Lines, and Defragmentation Columns 2
and 3 of Table 4 show performance for mark-region collectors that
provide just block marking (block); block and line marking with
overflow allocation, but without defragmentation (No DF); block,
line, overflow, and defragmentation with no head room (No HR);
everything but overflow allocation (No Ov). Some benchmarks
perform remarkably well, while others are unable to run at all in
a 2⇥ heap. In columns 8, 9 and 10 of Table 3, we show the amount
of ‘dark matter’ due to imprecise marking. Column 8 shows the
imprecision overhead of marking only at a block grain, column 9
shows the overhead for line marking, and column 10 shows the
overhead due to conservative line marks. We express overhead as
a percentage of the actual bytes live at each collection, so a 100%
overhead means marking was imprecise by a factor of two. If the
collector only recycled blocks (block), block fragmentation would
lead to it on average inflating the amount marked by 93% (nearly
double). However, for some benchmarks such as db, compress

and jython, a naive block-grain marking scheme is remarkably
effective. If the system used line marking (line), but still did not
perform defragmentation, waste would inflate the amount marked
by 23% on average. We also measured the memory wasted due to
conservative marking. A few benchmarks, such as javac and fop

waste 25 to 20%, but most benchmarks waste less than 6%.

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

Copying

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf
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Figure 6. Generational Collector Performance on Core 2 Duo. Geometric Mean of 20 DaCapo and SPEC Benchmarks.

original by is that we use an efficient object-remembering bar-
rier [16] to identify modified mature objects rather than page pro-
tection and card marks. Our collectors are trivial extensions over
their canonical full heap counter-parts. An early implementation of
Jikes RVM had an in-place generational collector which did not use
sticky mark bits, but stored extra state on the side. In Attanasio et
al.’s garbage collector review [6], they mention this collector, but do
not evaluate it. Domani et al. [23] build and evaluate an on-the-fly
generational collector using the sticky mark bits algorithm. Aside
from these collectors, we are unaware of in-place generational col-
lection finding use outside of the conservative setting of Demmers
et al.’s work, where a sticky mark bit collector is the only way to
achieve generational scavenging since copying is not possible.

Figure 6(b) shows that each of these in-place collectors im-
proves over the canonical algorithms in tighter heaps with mini-
mal degradation in large heaps. In particular, G|IX-IX almost uni-
formly improves over IX. However, G|MS-MS does not improve
sufficiently over MS to justify its use, given the option of a regu-
lar copying generational collector. In Figure 6(c), we see G|IX-IX
compared to the other immix collectors and Jikes RVM’s produc-
tion collector (G|SS-MS). These results show that G|IX-IX per-
forms very competitively. Since in-place generational collection is
trivial to implement, and unlike composites with evacuating nurs-
eries, does not detract from the mostly non-moving properties of
immix, the in-place immix collector may have interesting applica-
tion opportunities.

Columns 6, 7 and 8 of Table 2 show a performance slice at a
1.5⇥ heap for the mark-sweep and immix in-place collectors, with
results normalized to Jikes RVM’s production collector, G|SS-MS.
Here we include two variants on G|IX-IX: G|IX-IX will oppor-
tunistic evacuate during nursery collections as well as during de-
fragmentation, while G|IX-IXnm will only opportunistically evacu-
ate during defragmentation time. We found that these two variants
performed about the same. We spent more time tuning this collector
than we did G|SS-IX, but it remains a fairly naive implementation,
and similar to G|SS-IX, can likely be improved.

The result of the experiment with in-place generational collec-
tion highlights the importance of significantly improving the per-
formance of the full heap algorithm. While the mark-sweep in-
place collector is ‘interesting’ and perhaps useful in a conservative
collection context, changing the base from mark-sweep to immix
transforms the idea into a serious proposition for a performance-
oriented setting.

5.4 Understanding Immix Performance
Each of the preceding sections and Figure 6(c) show how the immix
achieves all three goals: space efficiency (Figure 5), fast collection
(Figure 3(f)) and mutator performance (Figure 3(d)). This section
examines the individual features and policy sensitivities presented
in Tables 3 and 4.

Block Utilization To understand immix’s allocation behavior,
columns 2–6 of Table 3 show how allocation was distributed among
blocks, in terms of the fullness of the blocks. At the nominal 2⇥
heap size, immix allocates 79% of data into completely free or
mostly free blocks (< 25% marked), on average across our bench-
mark suite. Only occasionally, always less than 5%, does immix
allocate into mostly full blocks with > 75% marked. We also mea-
sured how these statistics vary with heap size. Immix allocates
more from recyclable blocks in small heaps than large. For exam-
ple, compared to 43% of allocation to completely free blocks at
2⇥ heap size, immix allocates 76% at a 6⇥ heap size. This trend
is because more frequent collection tends to fragment the heap
more; given longer to die more objects die together, whereas more
frequent collection exposes more differences in object lifetimes.

Overflow Allocation We found overflow allocation helps provide
space efficiency in tight heaps. Column 7 of Table 3 shows the per-
cent of objects that immix sends to the overflow allocator. On aver-
age, it handles 4% of allocation, however jython and xalan are con-
spicuous outliers. Column 5 of Table 4 shows the performance ef-
fect of turning off the overflow allocator mechanism. Three bench-
marks, antlr, jython and lusearch, benefit from this mechanism,
and xalan is slowed down by overflow allocation. Note however,
that the memory savings associated with a given use of the over-
flow allocator may vary widely, depending on the size of pending
allocation and the level of fragmentation of the recycled blocks.

Importance of Blocks, Lines, and Defragmentation Columns 2
and 3 of Table 4 show performance for mark-region collectors that
provide just block marking (block); block and line marking with
overflow allocation, but without defragmentation (No DF); block,
line, overflow, and defragmentation with no head room (No HR);
everything but overflow allocation (No Ov). Some benchmarks
perform remarkably well, while others are unable to run at all in
a 2⇥ heap. In columns 8, 9 and 10 of Table 3, we show the amount
of ‘dark matter’ due to imprecise marking. Column 8 shows the
imprecision overhead of marking only at a block grain, column 9
shows the overhead for line marking, and column 10 shows the
overhead due to conservative line marks. We express overhead as
a percentage of the actual bytes live at each collection, so a 100%
overhead means marking was imprecise by a factor of two. If the
collector only recycled blocks (block), block fragmentation would
lead to it on average inflating the amount marked by 93% (nearly
double). However, for some benchmarks such as db, compress

and jython, a naive block-grain marking scheme is remarkably
effective. If the system used line marking (line), but still did not
perform defragmentation, waste would inflate the amount marked
by 23% on average. We also measured the memory wasted due to
conservative marking. A few benchmarks, such as javac and fop

waste 25 to 20%, but most benchmarks waste less than 6%.

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

Non-copying

Copying

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf
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Figure 6. Generational Collector Performance on Core 2 Duo. Geometric Mean of 20 DaCapo and SPEC Benchmarks.

original by is that we use an efficient object-remembering bar-
rier [16] to identify modified mature objects rather than page pro-
tection and card marks. Our collectors are trivial extensions over
their canonical full heap counter-parts. An early implementation of
Jikes RVM had an in-place generational collector which did not use
sticky mark bits, but stored extra state on the side. In Attanasio et
al.’s garbage collector review [6], they mention this collector, but do
not evaluate it. Domani et al. [23] build and evaluate an on-the-fly
generational collector using the sticky mark bits algorithm. Aside
from these collectors, we are unaware of in-place generational col-
lection finding use outside of the conservative setting of Demmers
et al.’s work, where a sticky mark bit collector is the only way to
achieve generational scavenging since copying is not possible.

Figure 6(b) shows that each of these in-place collectors im-
proves over the canonical algorithms in tighter heaps with mini-
mal degradation in large heaps. In particular, G|IX-IX almost uni-
formly improves over IX. However, G|MS-MS does not improve
sufficiently over MS to justify its use, given the option of a regu-
lar copying generational collector. In Figure 6(c), we see G|IX-IX
compared to the other immix collectors and Jikes RVM’s produc-
tion collector (G|SS-MS). These results show that G|IX-IX per-
forms very competitively. Since in-place generational collection is
trivial to implement, and unlike composites with evacuating nurs-
eries, does not detract from the mostly non-moving properties of
immix, the in-place immix collector may have interesting applica-
tion opportunities.

Columns 6, 7 and 8 of Table 2 show a performance slice at a
1.5⇥ heap for the mark-sweep and immix in-place collectors, with
results normalized to Jikes RVM’s production collector, G|SS-MS.
Here we include two variants on G|IX-IX: G|IX-IX will oppor-
tunistic evacuate during nursery collections as well as during de-
fragmentation, while G|IX-IXnm will only opportunistically evacu-
ate during defragmentation time. We found that these two variants
performed about the same. We spent more time tuning this collector
than we did G|SS-IX, but it remains a fairly naive implementation,
and similar to G|SS-IX, can likely be improved.

The result of the experiment with in-place generational collec-
tion highlights the importance of significantly improving the per-
formance of the full heap algorithm. While the mark-sweep in-
place collector is ‘interesting’ and perhaps useful in a conservative
collection context, changing the base from mark-sweep to immix
transforms the idea into a serious proposition for a performance-
oriented setting.

5.4 Understanding Immix Performance
Each of the preceding sections and Figure 6(c) show how the immix
achieves all three goals: space efficiency (Figure 5), fast collection
(Figure 3(f)) and mutator performance (Figure 3(d)). This section
examines the individual features and policy sensitivities presented
in Tables 3 and 4.

Block Utilization To understand immix’s allocation behavior,
columns 2–6 of Table 3 show how allocation was distributed among
blocks, in terms of the fullness of the blocks. At the nominal 2⇥
heap size, immix allocates 79% of data into completely free or
mostly free blocks (< 25% marked), on average across our bench-
mark suite. Only occasionally, always less than 5%, does immix
allocate into mostly full blocks with > 75% marked. We also mea-
sured how these statistics vary with heap size. Immix allocates
more from recyclable blocks in small heaps than large. For exam-
ple, compared to 43% of allocation to completely free blocks at
2⇥ heap size, immix allocates 76% at a 6⇥ heap size. This trend
is because more frequent collection tends to fragment the heap
more; given longer to die more objects die together, whereas more
frequent collection exposes more differences in object lifetimes.

Overflow Allocation We found overflow allocation helps provide
space efficiency in tight heaps. Column 7 of Table 3 shows the per-
cent of objects that immix sends to the overflow allocator. On aver-
age, it handles 4% of allocation, however jython and xalan are con-
spicuous outliers. Column 5 of Table 4 shows the performance ef-
fect of turning off the overflow allocator mechanism. Three bench-
marks, antlr, jython and lusearch, benefit from this mechanism,
and xalan is slowed down by overflow allocation. Note however,
that the memory savings associated with a given use of the over-
flow allocator may vary widely, depending on the size of pending
allocation and the level of fragmentation of the recycled blocks.

Importance of Blocks, Lines, and Defragmentation Columns 2
and 3 of Table 4 show performance for mark-region collectors that
provide just block marking (block); block and line marking with
overflow allocation, but without defragmentation (No DF); block,
line, overflow, and defragmentation with no head room (No HR);
everything but overflow allocation (No Ov). Some benchmarks
perform remarkably well, while others are unable to run at all in
a 2⇥ heap. In columns 8, 9 and 10 of Table 3, we show the amount
of ‘dark matter’ due to imprecise marking. Column 8 shows the
imprecision overhead of marking only at a block grain, column 9
shows the overhead for line marking, and column 10 shows the
overhead due to conservative line marks. We express overhead as
a percentage of the actual bytes live at each collection, so a 100%
overhead means marking was imprecise by a factor of two. If the
collector only recycled blocks (block), block fragmentation would
lead to it on average inflating the amount marked by 93% (nearly
double). However, for some benchmarks such as db, compress

and jython, a naive block-grain marking scheme is remarkably
effective. If the system used line marking (line), but still did not
perform defragmentation, waste would inflate the amount marked
by 23% on average. We also measured the memory wasted due to
conservative marking. A few benchmarks, such as javac and fop

waste 25 to 20%, but most benchmarks waste less than 6%.

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf
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Figure 6. Generational Collector Performance on Core 2 Duo. Geometric Mean of 20 DaCapo and SPEC Benchmarks.

original by is that we use an efficient object-remembering bar-
rier [16] to identify modified mature objects rather than page pro-
tection and card marks. Our collectors are trivial extensions over
their canonical full heap counter-parts. An early implementation of
Jikes RVM had an in-place generational collector which did not use
sticky mark bits, but stored extra state on the side. In Attanasio et
al.’s garbage collector review [6], they mention this collector, but do
not evaluate it. Domani et al. [23] build and evaluate an on-the-fly
generational collector using the sticky mark bits algorithm. Aside
from these collectors, we are unaware of in-place generational col-
lection finding use outside of the conservative setting of Demmers
et al.’s work, where a sticky mark bit collector is the only way to
achieve generational scavenging since copying is not possible.

Figure 6(b) shows that each of these in-place collectors im-
proves over the canonical algorithms in tighter heaps with mini-
mal degradation in large heaps. In particular, G|IX-IX almost uni-
formly improves over IX. However, G|MS-MS does not improve
sufficiently over MS to justify its use, given the option of a regu-
lar copying generational collector. In Figure 6(c), we see G|IX-IX
compared to the other immix collectors and Jikes RVM’s produc-
tion collector (G|SS-MS). These results show that G|IX-IX per-
forms very competitively. Since in-place generational collection is
trivial to implement, and unlike composites with evacuating nurs-
eries, does not detract from the mostly non-moving properties of
immix, the in-place immix collector may have interesting applica-
tion opportunities.

Columns 6, 7 and 8 of Table 2 show a performance slice at a
1.5⇥ heap for the mark-sweep and immix in-place collectors, with
results normalized to Jikes RVM’s production collector, G|SS-MS.
Here we include two variants on G|IX-IX: G|IX-IX will oppor-
tunistic evacuate during nursery collections as well as during de-
fragmentation, while G|IX-IXnm will only opportunistically evacu-
ate during defragmentation time. We found that these two variants
performed about the same. We spent more time tuning this collector
than we did G|SS-IX, but it remains a fairly naive implementation,
and similar to G|SS-IX, can likely be improved.

The result of the experiment with in-place generational collec-
tion highlights the importance of significantly improving the per-
formance of the full heap algorithm. While the mark-sweep in-
place collector is ‘interesting’ and perhaps useful in a conservative
collection context, changing the base from mark-sweep to immix
transforms the idea into a serious proposition for a performance-
oriented setting.

5.4 Understanding Immix Performance
Each of the preceding sections and Figure 6(c) show how the immix
achieves all three goals: space efficiency (Figure 5), fast collection
(Figure 3(f)) and mutator performance (Figure 3(d)). This section
examines the individual features and policy sensitivities presented
in Tables 3 and 4.

Block Utilization To understand immix’s allocation behavior,
columns 2–6 of Table 3 show how allocation was distributed among
blocks, in terms of the fullness of the blocks. At the nominal 2⇥
heap size, immix allocates 79% of data into completely free or
mostly free blocks (< 25% marked), on average across our bench-
mark suite. Only occasionally, always less than 5%, does immix
allocate into mostly full blocks with > 75% marked. We also mea-
sured how these statistics vary with heap size. Immix allocates
more from recyclable blocks in small heaps than large. For exam-
ple, compared to 43% of allocation to completely free blocks at
2⇥ heap size, immix allocates 76% at a 6⇥ heap size. This trend
is because more frequent collection tends to fragment the heap
more; given longer to die more objects die together, whereas more
frequent collection exposes more differences in object lifetimes.

Overflow Allocation We found overflow allocation helps provide
space efficiency in tight heaps. Column 7 of Table 3 shows the per-
cent of objects that immix sends to the overflow allocator. On aver-
age, it handles 4% of allocation, however jython and xalan are con-
spicuous outliers. Column 5 of Table 4 shows the performance ef-
fect of turning off the overflow allocator mechanism. Three bench-
marks, antlr, jython and lusearch, benefit from this mechanism,
and xalan is slowed down by overflow allocation. Note however,
that the memory savings associated with a given use of the over-
flow allocator may vary widely, depending on the size of pending
allocation and the level of fragmentation of the recycled blocks.

Importance of Blocks, Lines, and Defragmentation Columns 2
and 3 of Table 4 show performance for mark-region collectors that
provide just block marking (block); block and line marking with
overflow allocation, but without defragmentation (No DF); block,
line, overflow, and defragmentation with no head room (No HR);
everything but overflow allocation (No Ov). Some benchmarks
perform remarkably well, while others are unable to run at all in
a 2⇥ heap. In columns 8, 9 and 10 of Table 3, we show the amount
of ‘dark matter’ due to imprecise marking. Column 8 shows the
imprecision overhead of marking only at a block grain, column 9
shows the overhead for line marking, and column 10 shows the
overhead due to conservative line marks. We express overhead as
a percentage of the actual bytes live at each collection, so a 100%
overhead means marking was imprecise by a factor of two. If the
collector only recycled blocks (block), block fragmentation would
lead to it on average inflating the amount marked by 93% (nearly
double). However, for some benchmarks such as db, compress

and jython, a naive block-grain marking scheme is remarkably
effective. If the system used line marking (line), but still did not
perform defragmentation, waste would inflate the amount marked
by 23% on average. We also measured the memory wasted due to
conservative marking. A few benchmarks, such as javac and fop

waste 25 to 20%, but most benchmarks waste less than 6%.
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• You don’t need copying to avoid sweeping. 

• Copying does not save space.



• We want concurrency.



Collector Type Barrier Overhead

Generational Reference Write Barrier 
0% overhead

Concurrent Marking Reference Write Barrier 
0% overhead

Concurrent Copying 
with To-Space Invariant

Reference Read Barrier 
≥1% overhead 

cross-cutting VM changes

Concurrent Copying 
with From-Space Invariant

Universal Write Barrier 
forwarding pointer in header 

observable



Collector Type Barrier Overhead

Generational Reference Write Barrier 
0% overhead

Concurrent Marking Reference Write Barrier 
0% overhead

Concurrent Copying 
with To-Space Invariant

Reference Read Barrier 
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observable



Copying Makes Everything 
Harder

• Harder to write native code. 

• Compiler has more to worry about. 

• Hashing is harder. 

• Debugging VM bugs is more “exciting”.



• Not having copying enables efficient concurrent 
GC. 

• Not having copying makes my team more 
productive.



• How much faster is copying? 

• 0% faster 

• Does it save space? 

• not really 

• How much long-term maintenance cost does it 
incur? 

• everything is harder



Why mark-sweep?



Why mark-sweep?
Because it’s easier and not any worse.



Algorithm



• Huge shout out: 

• Boehm-Demers-Weiser GC 

• Our GC is heavily influenced by the BDW algorithm. 

• Our GC is an independent implementation of that 
algorithm, with major extensions: 

• Some for performance. 

• Some to support VM features. 

• This makes direct perf comparison impossible.



Algorithm
• Simple Segregated Storage 

• Bump’n’pop 

• Constraint-Based Marking 

• Parallel “Draining” 

• Sticky Mark Bits 

• Conservative Roots 

• Fragmentation Mitigations
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Simple Segregated 
Storage
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adjacent objects

Coalesce and Split



Desired Property Possible Solution

Given a size, find a free object

Given an object, get its size

Given an address, find if it’s 
inside an object

Given an object, find its 
adjacent objects

Coalesce and Split

Free List per Size Class 
(Segregated Free Lists)



Desired Property Possible Solution

Given a size, find a free object

Given an object, get its size

Given an address, find if it’s 
inside an object

Given an object, find its 
adjacent objects

Coalesce and Split

16KB blocks of same-size 
objects and a header

Free List per Size Class 
(Segregated Free Lists)



Desired Property Possible Solution

Given a size, find a free object

Given an object, get its size

Given an address, find if it’s 
inside an object

Given an object, find its 
adjacent objects

Coalesce and Split

16KB blocks of same-size 
objects and a header

Global HashSet of blocks

Free List per Size Class 
(Segregated Free Lists)



Desired Property Possible Solution

Given a size, find a free object

Given an object, get its size

Given an address, find if it’s 
inside an object

Given an object, find its 
adjacent objects

Coalesce and Split

16KB blocks of same-size 
objects and a header

Global HashSet of blocks

16KB blocks of same-size 
objects and a header

Free List per Size Class 
(Segregated Free Lists)



Desired Property Possible Solution

Given a size, find a free object

Given an object, get its size

Given an address, find if it’s 
inside an object

Given an object, find its 
adjacent objects

Coalesce and Split

16KB blocks of same-size 
objects and a header

Global HashSet of blocks

16KB blocks of same-size 
objects and a header

Blocks can switch size classes 
when they are empty

Free List per Size Class 
(Segregated Free Lists)
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header



header

Header contains: • size class 
• mark bits 
• marking version 
• occupancy count



Simple Segregated Storage

• Free list per size class 

• Each 16KB block belongs to one size class 

• Each block can self-identify size class 

• Blocks maintain marking state 

• Global HashSet of blocks



Bump’n’pop





Building free-lists is expensive



Building free-lists is expensive
Easily doubles cost of allocating small objects



• Have to check each mark bit 

• Our mark bits are super compact 

• This is as cheap as it gets 

• But it’s still not free! 

• Have to build linked list 

• Touch 16KB
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Completely 
Empty Fragmented

Super Common Fairly CommonUncommon

Objects Allocated Together Have Similar Lifetimes

90% 
Full

High Infant Mortality
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begin

GC rapidly identifies empty blocks
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end

begin

GC rapidly identifies empty blocks

Empty blocks use bump allocator

markingNotEmpty: 0 1 1

No need to scan mark bits of empty blocks



bump’n’pop

end

begin

GC rapidly identifies empty blocks

Empty blocks use bump allocator

markingNotEmpty: 0 1 1

No need to scan mark bits of empty blocks



Simple segregated storage assumes 
that all objects in a block have the 

same size.

Our bump allocator preserves this.



Allocation Algorithm

1. Round up allocation size to size class 

2. Allocate using size class’s size 

I. First try bump 

II. Then try pop



// bump

// pop

template<typename Func>
HeapCell* FreeList::allocate(const Func& slowPath)
{
    unsigned remaining = m_remaining;
    if (remaining) {
        unsigned cellSize = m_cellSize;
        remaining -= cellSize;
        m_remaining = remaining;
        return bitwise_cast<HeapCell*>(m_payloadEnd - remaining - cellSize);
    }
    
    FreeCell* result = head();
    if (UNLIKELY(!result))
        return slowPath();
    
    m_scrambledHead = result->scrambledNext;
    return bitwise_cast<HeapCell*>(result);
}
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// bump

// pop

template<typename Func>
HeapCell* FreeList::allocate(const Func& slowPath)
{
    unsigned remaining = m_remaining;
    if (remaining) {
        unsigned cellSize = m_cellSize;
        remaining -= cellSize;
        m_remaining = remaining;
        return bitwise_cast<HeapCell*>(m_payloadEnd - remaining - cellSize);
    }
    
    FreeCell* result = head();
    if (UNLIKELY(!result))
        return slowPath();
    
    m_scrambledHead = result->scrambledNext;
    return bitwise_cast<HeapCell*>(result);
}

bump’n’pop uses scrambled free-lists
scrambled free-lists haven’t shipped yet!
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indexing

type

flags

cell state

structure 
ID butterfly pointer native buffer FreeCell::next0x31337c0defefebaadbeefaa



• Scramble the freelist with a per-freelist secret. 

• Select a new secret every time we build a 
freelist.



• Bump’n’pop is as fast as our previous copying 
bump allocator, and faster than our previous 
pop-only allocator.



• We also tried concurrent sweeping.  Bump’n’pop 
was faster.



• We also tried concurrent sweeping with 
bump’n’pop.  It wasn’t any better than just 
bump’n’pop.



bump’n’pop

• Empty blocks don’t scan mark bits. 

• Empty blocks don’t build free lists. 

• 90% full blocks are treated as if they were full.



Constraint-Based 
Marking



Constraint-Based Marking
• Transitive reachability is not always enough 

• Common examples: 

• Soft references 

• Weak map 
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Type Inference
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global 
object

JIT code

Is this a weak reference?



JIT code references a 
structure

• Strong reference? 

• Weak reference? 

• Marking constraint?
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• JIT code references the structure weakly.

structure

prototype

global 
object

JIT 
code

Marking Constraint



• JIT code references the structure weakly.

• JIT code also registers the above marking 
constraint.

if (isMarked(structure->globalObject())
    && isMarked(structure->storedPrototype()))
    mark(structure);

structure

prototype

global 
object

JIT 
code

Marking Constraint



JIT code

Marking Constraint!
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JIT code

Marking Constraint!

{x, y}

prototype

global 
object

It’s cool - the prototype and global object are long-lived.



JIT code

Marking Constraint!
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{x, y}

JIT code

Marking Constraint!

We want the JIT code to die in this case.



Marking Constraint!

• If the objects that use the structure die, then: 

• Keep structure alive if the user objects it points 
to are alive anyway. 

• Kill the structure (and the JIT code) if keeping 
it alive would not be safe-for-space.



Marking Constraints

• Constraints can query which objects are 
marked. 

• Constraints can mark objects. 

• GC executes constraints to fixpoint.



Native Code
Including the DOM
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Native Heap JS Heap

thingy

blah
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foo

some native 
UI toolkit

JS proxy for 
UI object

JS event 
handler
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Strong Reference?
Native Heap JS Heap

blah

bar

thingy

foo

root

destroyed by foo’s finalizer, 
so live

Leak!

live

live
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Weak Reference?
Native Heap JS Heap

blah

thingy

foo



Weak Reference?
Native Heap JS Heap

blah

thingy

foo

bar dies premturely



Marking Constraint!
Native Heap JS Heap

blah

thingy

foo

bar
if (isMarked(foo))
    mark(bar)



Marking Constraints
• GC executes constraints to fixpoint. 

• Useful for implementing: 

• Type Inference 

• Weak Maps 

• DOM 

• Native Code



• The most expensive marking constraint is 
draining. 

• Draining = graph search over strong references 
between objects.



Parallel Draining



Parallel Draining

• CAS loop to set mark bits 

• Handful of WTF locks 

• Work donation
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Parallel Draining

• Donate work to global mark stack when we 
detect fan-out. 

• Stalled threads take 1/N of the global mark 
stack.



Detecting Fan-out

• Once every 100 objects visited, check if it’s 
worth donating. 

• Only donate if the global mark stack is empty 
and nobody holds the lock. 

• Donate about half of local mark stack.



Parallel Draining



Sticky Mark Bits



• In most cases, young objects are much more 
likely to die than old objects.



Generational GC



• Sticky Mark Bits = Generational GC without copying



YoungOld



YoungOld



YoungOld

We know that the object is young because of its address.



YoungOld



YoungOld

We know that the object is old because of its address.



• Traditional GenGC uses address to encode generation. 

• We can just as easily use some bits in the object header.



Sticky Mark Bits

• Each object has a GC byte that tells us the 
generational state: 
• New 

• Remembered 

• Old 

• Mark bits are not reset at the start of eden 
collections.



o->field = p
if (o->cellState() == Old)
    remember(o); // state becomes Remembered



Sticky Mark Bits

• Generational GC without copying. 

• Zero-cost write barrier. 

• Essential for throughput.



Conservative Roots



Style Implications

Accutate

Native code uses handles 
Compiler isolates pointers 

Theoretically less object drag 
Pain in the butt

Conservative

Native code uses raw pointers 
Compiler treats pointers as integers 

Possibly more object drag 
Mark pinning 
Super easy



Style Implications

Accutate

Native code uses handles 
Compiler isolates pointers 

Theoretically less object drag 
Pain in the butt

Conservative

Native code uses raw pointers 
Compiler treats pointers as integers 

Possibly more object drag 
Mark pinning 
Super easy

Is this really a thing?



• Conservative object drag totally was a thing.



• We mitigated conservative object drag: 

• 48-bit address space 

• ASLR 

• Stack sanitization



• See here for more sweet mitigations:  
http://www.hboehm.info/gc/



Fragmentation 
Mitigation



• Most of WebKit’s heap is malloc memory 
allocated by the DOM and HTML/CSS/SVG 
rendering code. 

• malloc mitigates fragmentations by modeling 
first-fit. 

• Not moving objects is the norm on desktop 
systems.



Fragmentation Mitigations

• Simulate first-fit 

• Coalesce and split 

• 48-bit address space



Efficient Mark-Sweep
• Simple Segregated Storage 

• Bump’n’pop 

• Constraint-Based Marking 

• Parallel “Draining” 

• Sticky Mark Bits 

• Conservative Roots 

• Fragmentation Mitigations



Agenda
• Introduction 

• JavaScriptCore 

• Efficient Mark-Sweep 

- 30 minute break 

• Concurrent GC 

• bmalloc 

• WTF::Lock


