
Efficient Mark-Sweep
Filip Pizlo

Apple

Efficient Mark-Sweep
• Introduction

• Why mark-sweep?

• Algorithm
• Simple Segregated Storage

• Bump’n’pop

• Constraint-Based Marking

• Parallel “Draining”

• Sticky Mark Bits

• Conservative Roots

• Fragmentation Mitigations

Introduction

Tracing

• An object is live if it is transitively reachable from
roots

• Roots = registers, stack, global variables

• Transtive reachability = graph search over
references between objects

Two Main Types of GC

• Mark-Sweep

• Copying

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

Mark-Sweep:

Copying:

O(#live + #dead)

Mark-Sweep:

Copying:

O(#live + #dead)

O(#live)

• Copying is an optimization for avoiding sweeping.

• Copying also reduces fragmentation.

• Is copying the only way to avoid sweeping?

• Does copying save space?

• You can avoid sweeping without copying.

• Find large free regions and bump-allocate in
them.

• See:

• Blackburn and McKinley PLDI’08

• Berger, Zorn, and McKinley OOPSLA’02

• Fragmentation is not a big problem in practice.

• Assuming you have:

• 48-bit address space

• Mitigations

 1

 1.05

 1.1

 1.15

 1.2

 1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

G|SS-MS
G|SS-SS
G|SS-IX

MS

(a) Copying Generational

 1

 1.05

 1.1

 1.15

 1.2

 1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

G|MS-MS
MS

G|IX-IX
IX

(b) In-Place Generational

 1

 1.05

 1.1

 1.15

 1.2

 1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

G|SS-MS
MS

G|SS-IX
G|IX-IX

IX

(c) Immix Variants

Figure 6. Generational Collector Performance on Core 2 Duo. Geometric Mean of 20 DaCapo and SPEC Benchmarks.

original by is that we use an efficient object-remembering bar-
rier [16] to identify modified mature objects rather than page pro-
tection and card marks. Our collectors are trivial extensions over
their canonical full heap counter-parts. An early implementation of
Jikes RVM had an in-place generational collector which did not use
sticky mark bits, but stored extra state on the side. In Attanasio et
al.’s garbage collector review [6], they mention this collector, but do
not evaluate it. Domani et al. [23] build and evaluate an on-the-fly
generational collector using the sticky mark bits algorithm. Aside
from these collectors, we are unaware of in-place generational col-
lection finding use outside of the conservative setting of Demmers
et al.’s work, where a sticky mark bit collector is the only way to
achieve generational scavenging since copying is not possible.

Figure 6(b) shows that each of these in-place collectors im-
proves over the canonical algorithms in tighter heaps with mini-
mal degradation in large heaps. In particular, G|IX-IX almost uni-
formly improves over IX. However, G|MS-MS does not improve
sufficiently over MS to justify its use, given the option of a regu-
lar copying generational collector. In Figure 6(c), we see G|IX-IX
compared to the other immix collectors and Jikes RVM’s produc-
tion collector (G|SS-MS). These results show that G|IX-IX per-
forms very competitively. Since in-place generational collection is
trivial to implement, and unlike composites with evacuating nurs-
eries, does not detract from the mostly non-moving properties of
immix, the in-place immix collector may have interesting applica-
tion opportunities.

Columns 6, 7 and 8 of Table 2 show a performance slice at a
1.5⇥ heap for the mark-sweep and immix in-place collectors, with
results normalized to Jikes RVM’s production collector, G|SS-MS.
Here we include two variants on G|IX-IX: G|IX-IX will oppor-
tunistic evacuate during nursery collections as well as during de-
fragmentation, while G|IX-IXnm will only opportunistically evacu-
ate during defragmentation time. We found that these two variants
performed about the same. We spent more time tuning this collector
than we did G|SS-IX, but it remains a fairly naive implementation,
and similar to G|SS-IX, can likely be improved.

The result of the experiment with in-place generational collec-
tion highlights the importance of significantly improving the per-
formance of the full heap algorithm. While the mark-sweep in-
place collector is ‘interesting’ and perhaps useful in a conservative
collection context, changing the base from mark-sweep to immix
transforms the idea into a serious proposition for a performance-
oriented setting.

5.4 Understanding Immix Performance
Each of the preceding sections and Figure 6(c) show how the immix
achieves all three goals: space efficiency (Figure 5), fast collection
(Figure 3(f)) and mutator performance (Figure 3(d)). This section
examines the individual features and policy sensitivities presented
in Tables 3 and 4.

Block Utilization To understand immix’s allocation behavior,
columns 2–6 of Table 3 show how allocation was distributed among
blocks, in terms of the fullness of the blocks. At the nominal 2⇥
heap size, immix allocates 79% of data into completely free or
mostly free blocks (< 25% marked), on average across our bench-
mark suite. Only occasionally, always less than 5%, does immix
allocate into mostly full blocks with > 75% marked. We also mea-
sured how these statistics vary with heap size. Immix allocates
more from recyclable blocks in small heaps than large. For exam-
ple, compared to 43% of allocation to completely free blocks at
2⇥ heap size, immix allocates 76% at a 6⇥ heap size. This trend
is because more frequent collection tends to fragment the heap
more; given longer to die more objects die together, whereas more
frequent collection exposes more differences in object lifetimes.

Overflow Allocation We found overflow allocation helps provide
space efficiency in tight heaps. Column 7 of Table 3 shows the per-
cent of objects that immix sends to the overflow allocator. On aver-
age, it handles 4% of allocation, however jython and xalan are con-
spicuous outliers. Column 5 of Table 4 shows the performance ef-
fect of turning off the overflow allocator mechanism. Three bench-
marks, antlr, jython and lusearch, benefit from this mechanism,
and xalan is slowed down by overflow allocation. Note however,
that the memory savings associated with a given use of the over-
flow allocator may vary widely, depending on the size of pending
allocation and the level of fragmentation of the recycled blocks.

Importance of Blocks, Lines, and Defragmentation Columns 2
and 3 of Table 4 show performance for mark-region collectors that
provide just block marking (block); block and line marking with
overflow allocation, but without defragmentation (No DF); block,
line, overflow, and defragmentation with no head room (No HR);
everything but overflow allocation (No Ov). Some benchmarks
perform remarkably well, while others are unable to run at all in
a 2⇥ heap. In columns 8, 9 and 10 of Table 3, we show the amount
of ‘dark matter’ due to imprecise marking. Column 8 shows the
imprecision overhead of marking only at a block grain, column 9
shows the overhead for line marking, and column 10 shows the
overhead due to conservative line marks. We express overhead as
a percentage of the actual bytes live at each collection, so a 100%
overhead means marking was imprecise by a factor of two. If the
collector only recycled blocks (block), block fragmentation would
lead to it on average inflating the amount marked by 93% (nearly
double). However, for some benchmarks such as db, compress

and jython, a naive block-grain marking scheme is remarkably
effective. If the system used line marking (line), but still did not
perform defragmentation, waste would inflate the amount marked
by 23% on average. We also measured the memory wasted due to
conservative marking. A few benchmarks, such as javac and fop

waste 25 to 20%, but most benchmarks waste less than 6%.

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

 1

 1.05

 1.1

 1.15

 1.2

 1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

G|SS-MS
G|SS-SS
G|SS-IX

MS

(a) Copying Generational

 1

 1.05

 1.1

 1.15

 1.2

 1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

G|MS-MS
MS

G|IX-IX
IX

(b) In-Place Generational

 1

 1.05

 1.1

 1.15

 1.2

 1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

G|SS-MS
MS

G|SS-IX
G|IX-IX

IX

(c) Immix Variants

Figure 6. Generational Collector Performance on Core 2 Duo. Geometric Mean of 20 DaCapo and SPEC Benchmarks.

original by is that we use an efficient object-remembering bar-
rier [16] to identify modified mature objects rather than page pro-
tection and card marks. Our collectors are trivial extensions over
their canonical full heap counter-parts. An early implementation of
Jikes RVM had an in-place generational collector which did not use
sticky mark bits, but stored extra state on the side. In Attanasio et
al.’s garbage collector review [6], they mention this collector, but do
not evaluate it. Domani et al. [23] build and evaluate an on-the-fly
generational collector using the sticky mark bits algorithm. Aside
from these collectors, we are unaware of in-place generational col-
lection finding use outside of the conservative setting of Demmers
et al.’s work, where a sticky mark bit collector is the only way to
achieve generational scavenging since copying is not possible.

Figure 6(b) shows that each of these in-place collectors im-
proves over the canonical algorithms in tighter heaps with mini-
mal degradation in large heaps. In particular, G|IX-IX almost uni-
formly improves over IX. However, G|MS-MS does not improve
sufficiently over MS to justify its use, given the option of a regu-
lar copying generational collector. In Figure 6(c), we see G|IX-IX
compared to the other immix collectors and Jikes RVM’s produc-
tion collector (G|SS-MS). These results show that G|IX-IX per-
forms very competitively. Since in-place generational collection is
trivial to implement, and unlike composites with evacuating nurs-
eries, does not detract from the mostly non-moving properties of
immix, the in-place immix collector may have interesting applica-
tion opportunities.

Columns 6, 7 and 8 of Table 2 show a performance slice at a
1.5⇥ heap for the mark-sweep and immix in-place collectors, with
results normalized to Jikes RVM’s production collector, G|SS-MS.
Here we include two variants on G|IX-IX: G|IX-IX will oppor-
tunistic evacuate during nursery collections as well as during de-
fragmentation, while G|IX-IXnm will only opportunistically evacu-
ate during defragmentation time. We found that these two variants
performed about the same. We spent more time tuning this collector
than we did G|SS-IX, but it remains a fairly naive implementation,
and similar to G|SS-IX, can likely be improved.

The result of the experiment with in-place generational collec-
tion highlights the importance of significantly improving the per-
formance of the full heap algorithm. While the mark-sweep in-
place collector is ‘interesting’ and perhaps useful in a conservative
collection context, changing the base from mark-sweep to immix
transforms the idea into a serious proposition for a performance-
oriented setting.

5.4 Understanding Immix Performance
Each of the preceding sections and Figure 6(c) show how the immix
achieves all three goals: space efficiency (Figure 5), fast collection
(Figure 3(f)) and mutator performance (Figure 3(d)). This section
examines the individual features and policy sensitivities presented
in Tables 3 and 4.

Block Utilization To understand immix’s allocation behavior,
columns 2–6 of Table 3 show how allocation was distributed among
blocks, in terms of the fullness of the blocks. At the nominal 2⇥
heap size, immix allocates 79% of data into completely free or
mostly free blocks (< 25% marked), on average across our bench-
mark suite. Only occasionally, always less than 5%, does immix
allocate into mostly full blocks with > 75% marked. We also mea-
sured how these statistics vary with heap size. Immix allocates
more from recyclable blocks in small heaps than large. For exam-
ple, compared to 43% of allocation to completely free blocks at
2⇥ heap size, immix allocates 76% at a 6⇥ heap size. This trend
is because more frequent collection tends to fragment the heap
more; given longer to die more objects die together, whereas more
frequent collection exposes more differences in object lifetimes.

Overflow Allocation We found overflow allocation helps provide
space efficiency in tight heaps. Column 7 of Table 3 shows the per-
cent of objects that immix sends to the overflow allocator. On aver-
age, it handles 4% of allocation, however jython and xalan are con-
spicuous outliers. Column 5 of Table 4 shows the performance ef-
fect of turning off the overflow allocator mechanism. Three bench-
marks, antlr, jython and lusearch, benefit from this mechanism,
and xalan is slowed down by overflow allocation. Note however,
that the memory savings associated with a given use of the over-
flow allocator may vary widely, depending on the size of pending
allocation and the level of fragmentation of the recycled blocks.

Importance of Blocks, Lines, and Defragmentation Columns 2
and 3 of Table 4 show performance for mark-region collectors that
provide just block marking (block); block and line marking with
overflow allocation, but without defragmentation (No DF); block,
line, overflow, and defragmentation with no head room (No HR);
everything but overflow allocation (No Ov). Some benchmarks
perform remarkably well, while others are unable to run at all in
a 2⇥ heap. In columns 8, 9 and 10 of Table 3, we show the amount
of ‘dark matter’ due to imprecise marking. Column 8 shows the
imprecision overhead of marking only at a block grain, column 9
shows the overhead for line marking, and column 10 shows the
overhead due to conservative line marks. We express overhead as
a percentage of the actual bytes live at each collection, so a 100%
overhead means marking was imprecise by a factor of two. If the
collector only recycled blocks (block), block fragmentation would
lead to it on average inflating the amount marked by 93% (nearly
double). However, for some benchmarks such as db, compress

and jython, a naive block-grain marking scheme is remarkably
effective. If the system used line marking (line), but still did not
perform defragmentation, waste would inflate the amount marked
by 23% on average. We also measured the memory wasted due to
conservative marking. A few benchmarks, such as javac and fop

waste 25 to 20%, but most benchmarks waste less than 6%.

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

Copying

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

 1

 1.05

 1.1

 1.15

 1.2

 1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

G|SS-MS
G|SS-SS
G|SS-IX

MS

(a) Copying Generational

 1

 1.05

 1.1

 1.15

 1.2

 1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

G|MS-MS
MS

G|IX-IX
IX

(b) In-Place Generational

 1

 1.05

 1.1

 1.15

 1.2

 1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

G|SS-MS
MS

G|SS-IX
G|IX-IX

IX

(c) Immix Variants

Figure 6. Generational Collector Performance on Core 2 Duo. Geometric Mean of 20 DaCapo and SPEC Benchmarks.

original by is that we use an efficient object-remembering bar-
rier [16] to identify modified mature objects rather than page pro-
tection and card marks. Our collectors are trivial extensions over
their canonical full heap counter-parts. An early implementation of
Jikes RVM had an in-place generational collector which did not use
sticky mark bits, but stored extra state on the side. In Attanasio et
al.’s garbage collector review [6], they mention this collector, but do
not evaluate it. Domani et al. [23] build and evaluate an on-the-fly
generational collector using the sticky mark bits algorithm. Aside
from these collectors, we are unaware of in-place generational col-
lection finding use outside of the conservative setting of Demmers
et al.’s work, where a sticky mark bit collector is the only way to
achieve generational scavenging since copying is not possible.

Figure 6(b) shows that each of these in-place collectors im-
proves over the canonical algorithms in tighter heaps with mini-
mal degradation in large heaps. In particular, G|IX-IX almost uni-
formly improves over IX. However, G|MS-MS does not improve
sufficiently over MS to justify its use, given the option of a regu-
lar copying generational collector. In Figure 6(c), we see G|IX-IX
compared to the other immix collectors and Jikes RVM’s produc-
tion collector (G|SS-MS). These results show that G|IX-IX per-
forms very competitively. Since in-place generational collection is
trivial to implement, and unlike composites with evacuating nurs-
eries, does not detract from the mostly non-moving properties of
immix, the in-place immix collector may have interesting applica-
tion opportunities.

Columns 6, 7 and 8 of Table 2 show a performance slice at a
1.5⇥ heap for the mark-sweep and immix in-place collectors, with
results normalized to Jikes RVM’s production collector, G|SS-MS.
Here we include two variants on G|IX-IX: G|IX-IX will oppor-
tunistic evacuate during nursery collections as well as during de-
fragmentation, while G|IX-IXnm will only opportunistically evacu-
ate during defragmentation time. We found that these two variants
performed about the same. We spent more time tuning this collector
than we did G|SS-IX, but it remains a fairly naive implementation,
and similar to G|SS-IX, can likely be improved.

The result of the experiment with in-place generational collec-
tion highlights the importance of significantly improving the per-
formance of the full heap algorithm. While the mark-sweep in-
place collector is ‘interesting’ and perhaps useful in a conservative
collection context, changing the base from mark-sweep to immix
transforms the idea into a serious proposition for a performance-
oriented setting.

5.4 Understanding Immix Performance
Each of the preceding sections and Figure 6(c) show how the immix
achieves all three goals: space efficiency (Figure 5), fast collection
(Figure 3(f)) and mutator performance (Figure 3(d)). This section
examines the individual features and policy sensitivities presented
in Tables 3 and 4.

Block Utilization To understand immix’s allocation behavior,
columns 2–6 of Table 3 show how allocation was distributed among
blocks, in terms of the fullness of the blocks. At the nominal 2⇥
heap size, immix allocates 79% of data into completely free or
mostly free blocks (< 25% marked), on average across our bench-
mark suite. Only occasionally, always less than 5%, does immix
allocate into mostly full blocks with > 75% marked. We also mea-
sured how these statistics vary with heap size. Immix allocates
more from recyclable blocks in small heaps than large. For exam-
ple, compared to 43% of allocation to completely free blocks at
2⇥ heap size, immix allocates 76% at a 6⇥ heap size. This trend
is because more frequent collection tends to fragment the heap
more; given longer to die more objects die together, whereas more
frequent collection exposes more differences in object lifetimes.

Overflow Allocation We found overflow allocation helps provide
space efficiency in tight heaps. Column 7 of Table 3 shows the per-
cent of objects that immix sends to the overflow allocator. On aver-
age, it handles 4% of allocation, however jython and xalan are con-
spicuous outliers. Column 5 of Table 4 shows the performance ef-
fect of turning off the overflow allocator mechanism. Three bench-
marks, antlr, jython and lusearch, benefit from this mechanism,
and xalan is slowed down by overflow allocation. Note however,
that the memory savings associated with a given use of the over-
flow allocator may vary widely, depending on the size of pending
allocation and the level of fragmentation of the recycled blocks.

Importance of Blocks, Lines, and Defragmentation Columns 2
and 3 of Table 4 show performance for mark-region collectors that
provide just block marking (block); block and line marking with
overflow allocation, but without defragmentation (No DF); block,
line, overflow, and defragmentation with no head room (No HR);
everything but overflow allocation (No Ov). Some benchmarks
perform remarkably well, while others are unable to run at all in
a 2⇥ heap. In columns 8, 9 and 10 of Table 3, we show the amount
of ‘dark matter’ due to imprecise marking. Column 8 shows the
imprecision overhead of marking only at a block grain, column 9
shows the overhead for line marking, and column 10 shows the
overhead due to conservative line marks. We express overhead as
a percentage of the actual bytes live at each collection, so a 100%
overhead means marking was imprecise by a factor of two. If the
collector only recycled blocks (block), block fragmentation would
lead to it on average inflating the amount marked by 93% (nearly
double). However, for some benchmarks such as db, compress

and jython, a naive block-grain marking scheme is remarkably
effective. If the system used line marking (line), but still did not
perform defragmentation, waste would inflate the amount marked
by 23% on average. We also measured the memory wasted due to
conservative marking. A few benchmarks, such as javac and fop

waste 25 to 20%, but most benchmarks waste less than 6%.

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

Non-copying

Copying

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

 1

 1.05

 1.1

 1.15

 1.2

 1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

G|SS-MS
G|SS-SS
G|SS-IX

MS

(a) Copying Generational

 1

 1.05

 1.1

 1.15

 1.2

 1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

G|MS-MS
MS

G|IX-IX
IX

(b) In-Place Generational

 1

 1.05

 1.1

 1.15

 1.2

 1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

G|SS-MS
MS

G|SS-IX
G|IX-IX

IX

(c) Immix Variants

Figure 6. Generational Collector Performance on Core 2 Duo. Geometric Mean of 20 DaCapo and SPEC Benchmarks.

original by is that we use an efficient object-remembering bar-
rier [16] to identify modified mature objects rather than page pro-
tection and card marks. Our collectors are trivial extensions over
their canonical full heap counter-parts. An early implementation of
Jikes RVM had an in-place generational collector which did not use
sticky mark bits, but stored extra state on the side. In Attanasio et
al.’s garbage collector review [6], they mention this collector, but do
not evaluate it. Domani et al. [23] build and evaluate an on-the-fly
generational collector using the sticky mark bits algorithm. Aside
from these collectors, we are unaware of in-place generational col-
lection finding use outside of the conservative setting of Demmers
et al.’s work, where a sticky mark bit collector is the only way to
achieve generational scavenging since copying is not possible.

Figure 6(b) shows that each of these in-place collectors im-
proves over the canonical algorithms in tighter heaps with mini-
mal degradation in large heaps. In particular, G|IX-IX almost uni-
formly improves over IX. However, G|MS-MS does not improve
sufficiently over MS to justify its use, given the option of a regu-
lar copying generational collector. In Figure 6(c), we see G|IX-IX
compared to the other immix collectors and Jikes RVM’s produc-
tion collector (G|SS-MS). These results show that G|IX-IX per-
forms very competitively. Since in-place generational collection is
trivial to implement, and unlike composites with evacuating nurs-
eries, does not detract from the mostly non-moving properties of
immix, the in-place immix collector may have interesting applica-
tion opportunities.

Columns 6, 7 and 8 of Table 2 show a performance slice at a
1.5⇥ heap for the mark-sweep and immix in-place collectors, with
results normalized to Jikes RVM’s production collector, G|SS-MS.
Here we include two variants on G|IX-IX: G|IX-IX will oppor-
tunistic evacuate during nursery collections as well as during de-
fragmentation, while G|IX-IXnm will only opportunistically evacu-
ate during defragmentation time. We found that these two variants
performed about the same. We spent more time tuning this collector
than we did G|SS-IX, but it remains a fairly naive implementation,
and similar to G|SS-IX, can likely be improved.

The result of the experiment with in-place generational collec-
tion highlights the importance of significantly improving the per-
formance of the full heap algorithm. While the mark-sweep in-
place collector is ‘interesting’ and perhaps useful in a conservative
collection context, changing the base from mark-sweep to immix
transforms the idea into a serious proposition for a performance-
oriented setting.

5.4 Understanding Immix Performance
Each of the preceding sections and Figure 6(c) show how the immix
achieves all three goals: space efficiency (Figure 5), fast collection
(Figure 3(f)) and mutator performance (Figure 3(d)). This section
examines the individual features and policy sensitivities presented
in Tables 3 and 4.

Block Utilization To understand immix’s allocation behavior,
columns 2–6 of Table 3 show how allocation was distributed among
blocks, in terms of the fullness of the blocks. At the nominal 2⇥
heap size, immix allocates 79% of data into completely free or
mostly free blocks (< 25% marked), on average across our bench-
mark suite. Only occasionally, always less than 5%, does immix
allocate into mostly full blocks with > 75% marked. We also mea-
sured how these statistics vary with heap size. Immix allocates
more from recyclable blocks in small heaps than large. For exam-
ple, compared to 43% of allocation to completely free blocks at
2⇥ heap size, immix allocates 76% at a 6⇥ heap size. This trend
is because more frequent collection tends to fragment the heap
more; given longer to die more objects die together, whereas more
frequent collection exposes more differences in object lifetimes.

Overflow Allocation We found overflow allocation helps provide
space efficiency in tight heaps. Column 7 of Table 3 shows the per-
cent of objects that immix sends to the overflow allocator. On aver-
age, it handles 4% of allocation, however jython and xalan are con-
spicuous outliers. Column 5 of Table 4 shows the performance ef-
fect of turning off the overflow allocator mechanism. Three bench-
marks, antlr, jython and lusearch, benefit from this mechanism,
and xalan is slowed down by overflow allocation. Note however,
that the memory savings associated with a given use of the over-
flow allocator may vary widely, depending on the size of pending
allocation and the level of fragmentation of the recycled blocks.

Importance of Blocks, Lines, and Defragmentation Columns 2
and 3 of Table 4 show performance for mark-region collectors that
provide just block marking (block); block and line marking with
overflow allocation, but without defragmentation (No DF); block,
line, overflow, and defragmentation with no head room (No HR);
everything but overflow allocation (No Ov). Some benchmarks
perform remarkably well, while others are unable to run at all in
a 2⇥ heap. In columns 8, 9 and 10 of Table 3, we show the amount
of ‘dark matter’ due to imprecise marking. Column 8 shows the
imprecision overhead of marking only at a block grain, column 9
shows the overhead for line marking, and column 10 shows the
overhead due to conservative line marks. We express overhead as
a percentage of the actual bytes live at each collection, so a 100%
overhead means marking was imprecise by a factor of two. If the
collector only recycled blocks (block), block fragmentation would
lead to it on average inflating the amount marked by 93% (nearly
double). However, for some benchmarks such as db, compress

and jython, a naive block-grain marking scheme is remarkably
effective. If the system used line marking (line), but still did not
perform defragmentation, waste would inflate the amount marked
by 23% on average. We also measured the memory wasted due to
conservative marking. A few benchmarks, such as javac and fop

waste 25 to 20%, but most benchmarks waste less than 6%.

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

Non-copying

Copying

???

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

 1

 1.05

 1.1

 1.15

 1.2

 1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

G|SS-MS
G|SS-SS
G|SS-IX

MS

(a) Copying Generational

 1

 1.05

 1.1

 1.15

 1.2

 1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

G|MS-MS
MS

G|IX-IX
IX

(b) In-Place Generational

 1

 1.05

 1.1

 1.15

 1.2

 1 2 3 4 5 6

N
or

m
al

iz
ed

 T
im

e

Heap size relative to minimum heap size

G|SS-MS
MS

G|SS-IX
G|IX-IX

IX

(c) Immix Variants

Figure 6. Generational Collector Performance on Core 2 Duo. Geometric Mean of 20 DaCapo and SPEC Benchmarks.

original by is that we use an efficient object-remembering bar-
rier [16] to identify modified mature objects rather than page pro-
tection and card marks. Our collectors are trivial extensions over
their canonical full heap counter-parts. An early implementation of
Jikes RVM had an in-place generational collector which did not use
sticky mark bits, but stored extra state on the side. In Attanasio et
al.’s garbage collector review [6], they mention this collector, but do
not evaluate it. Domani et al. [23] build and evaluate an on-the-fly
generational collector using the sticky mark bits algorithm. Aside
from these collectors, we are unaware of in-place generational col-
lection finding use outside of the conservative setting of Demmers
et al.’s work, where a sticky mark bit collector is the only way to
achieve generational scavenging since copying is not possible.

Figure 6(b) shows that each of these in-place collectors im-
proves over the canonical algorithms in tighter heaps with mini-
mal degradation in large heaps. In particular, G|IX-IX almost uni-
formly improves over IX. However, G|MS-MS does not improve
sufficiently over MS to justify its use, given the option of a regu-
lar copying generational collector. In Figure 6(c), we see G|IX-IX
compared to the other immix collectors and Jikes RVM’s produc-
tion collector (G|SS-MS). These results show that G|IX-IX per-
forms very competitively. Since in-place generational collection is
trivial to implement, and unlike composites with evacuating nurs-
eries, does not detract from the mostly non-moving properties of
immix, the in-place immix collector may have interesting applica-
tion opportunities.

Columns 6, 7 and 8 of Table 2 show a performance slice at a
1.5⇥ heap for the mark-sweep and immix in-place collectors, with
results normalized to Jikes RVM’s production collector, G|SS-MS.
Here we include two variants on G|IX-IX: G|IX-IX will oppor-
tunistic evacuate during nursery collections as well as during de-
fragmentation, while G|IX-IXnm will only opportunistically evacu-
ate during defragmentation time. We found that these two variants
performed about the same. We spent more time tuning this collector
than we did G|SS-IX, but it remains a fairly naive implementation,
and similar to G|SS-IX, can likely be improved.

The result of the experiment with in-place generational collec-
tion highlights the importance of significantly improving the per-
formance of the full heap algorithm. While the mark-sweep in-
place collector is ‘interesting’ and perhaps useful in a conservative
collection context, changing the base from mark-sweep to immix
transforms the idea into a serious proposition for a performance-
oriented setting.

5.4 Understanding Immix Performance
Each of the preceding sections and Figure 6(c) show how the immix
achieves all three goals: space efficiency (Figure 5), fast collection
(Figure 3(f)) and mutator performance (Figure 3(d)). This section
examines the individual features and policy sensitivities presented
in Tables 3 and 4.

Block Utilization To understand immix’s allocation behavior,
columns 2–6 of Table 3 show how allocation was distributed among
blocks, in terms of the fullness of the blocks. At the nominal 2⇥
heap size, immix allocates 79% of data into completely free or
mostly free blocks (< 25% marked), on average across our bench-
mark suite. Only occasionally, always less than 5%, does immix
allocate into mostly full blocks with > 75% marked. We also mea-
sured how these statistics vary with heap size. Immix allocates
more from recyclable blocks in small heaps than large. For exam-
ple, compared to 43% of allocation to completely free blocks at
2⇥ heap size, immix allocates 76% at a 6⇥ heap size. This trend
is because more frequent collection tends to fragment the heap
more; given longer to die more objects die together, whereas more
frequent collection exposes more differences in object lifetimes.

Overflow Allocation We found overflow allocation helps provide
space efficiency in tight heaps. Column 7 of Table 3 shows the per-
cent of objects that immix sends to the overflow allocator. On aver-
age, it handles 4% of allocation, however jython and xalan are con-
spicuous outliers. Column 5 of Table 4 shows the performance ef-
fect of turning off the overflow allocator mechanism. Three bench-
marks, antlr, jython and lusearch, benefit from this mechanism,
and xalan is slowed down by overflow allocation. Note however,
that the memory savings associated with a given use of the over-
flow allocator may vary widely, depending on the size of pending
allocation and the level of fragmentation of the recycled blocks.

Importance of Blocks, Lines, and Defragmentation Columns 2
and 3 of Table 4 show performance for mark-region collectors that
provide just block marking (block); block and line marking with
overflow allocation, but without defragmentation (No DF); block,
line, overflow, and defragmentation with no head room (No HR);
everything but overflow allocation (No Ov). Some benchmarks
perform remarkably well, while others are unable to run at all in
a 2⇥ heap. In columns 8, 9 and 10 of Table 3, we show the amount
of ‘dark matter’ due to imprecise marking. Column 8 shows the
imprecision overhead of marking only at a block grain, column 9
shows the overhead for line marking, and column 10 shows the
overhead due to conservative line marks. We express overhead as
a percentage of the actual bytes live at each collection, so a 100%
overhead means marking was imprecise by a factor of two. If the
collector only recycled blocks (block), block fragmentation would
lead to it on average inflating the amount marked by 93% (nearly
double). However, for some benchmarks such as db, compress

and jython, a naive block-grain marking scheme is remarkably
effective. If the system used line marking (line), but still did not
perform defragmentation, waste would inflate the amount marked
by 23% on average. We also measured the memory wasted due to
conservative marking. A few benchmarks, such as javac and fop

waste 25 to 20%, but most benchmarks waste less than 6%.

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

Non-copying

Copying

???

???

http://www.cs.utexas.edu/users/speedway/DaCapo/papers/immix-pldi-2008.pdf

• You don’t need copying to avoid sweeping.

• Copying does not save space.

• We want concurrency.

Collector Type Barrier Overhead

Generational Reference Write Barrier
0% overhead

Concurrent Marking Reference Write Barrier
0% overhead

Concurrent Copying
with To-Space Invariant

Reference Read Barrier
≥1% overhead

cross-cutting VM changes

Concurrent Copying
with From-Space Invariant

Universal Write Barrier
forwarding pointer in header

observable

Collector Type Barrier Overhead

Generational Reference Write Barrier
0% overhead

Concurrent Marking Reference Write Barrier
0% overhead

Concurrent Copying
with To-Space Invariant

Reference Read Barrier
≥1% overhead

cross-cutting VM changes

Concurrent Copying
with From-Space Invariant

Universal Write Barrier
forwarding pointer in header

observable

Copying Makes Everything
Harder

• Harder to write native code.

• Compiler has more to worry about.

• Hashing is harder.

• Debugging VM bugs is more “exciting”.

• Not having copying enables efficient concurrent
GC.

• Not having copying makes my team more
productive.

• How much faster is copying?

• 0% faster

• Does it save space?

• not really

• How much long-term maintenance cost does it
incur?

• everything is harder

Why mark-sweep?

Why mark-sweep?
Because it’s easier and not any worse.

Algorithm

• Huge shout out:

• Boehm-Demers-Weiser GC

• Our GC is heavily influenced by the BDW algorithm.

• Our GC is an independent implementation of that
algorithm, with major extensions:

• Some for performance.

• Some to support VM features.

• This makes direct perf comparison impossible.

Algorithm
• Simple Segregated Storage

• Bump’n’pop

• Constraint-Based Marking

• Parallel “Draining”

• Sticky Mark Bits

• Conservative Roots

• Fragmentation Mitigations

Algorithm
• Simple Segregated Storage

• Bump’n’pop

• Constraint-Based Marking

• Parallel “Draining”

• Sticky Mark Bits

• Conservative Roots

• Fragmentation Mitigations

Simple Segregated
Storage

Desired Property Possible Solution

Given a size, find a free object

Given an object, get its size

Given an address, find if it’s
inside an object

Given an object, find its
adjacent objects

Coalesce and Split

Desired Property Possible Solution

Given a size, find a free object

Given an object, get its size

Given an address, find if it’s
inside an object

Given an object, find its
adjacent objects

Coalesce and Split

Free List per Size Class
(Segregated Free Lists)

Desired Property Possible Solution

Given a size, find a free object

Given an object, get its size

Given an address, find if it’s
inside an object

Given an object, find its
adjacent objects

Coalesce and Split

16KB blocks of same-size
objects and a header

Free List per Size Class
(Segregated Free Lists)

Desired Property Possible Solution

Given a size, find a free object

Given an object, get its size

Given an address, find if it’s
inside an object

Given an object, find its
adjacent objects

Coalesce and Split

16KB blocks of same-size
objects and a header

Global HashSet of blocks

Free List per Size Class
(Segregated Free Lists)

Desired Property Possible Solution

Given a size, find a free object

Given an object, get its size

Given an address, find if it’s
inside an object

Given an object, find its
adjacent objects

Coalesce and Split

16KB blocks of same-size
objects and a header

Global HashSet of blocks

16KB blocks of same-size
objects and a header

Free List per Size Class
(Segregated Free Lists)

Desired Property Possible Solution

Given a size, find a free object

Given an object, get its size

Given an address, find if it’s
inside an object

Given an object, find its
adjacent objects

Coalesce and Split

16KB blocks of same-size
objects and a header

Global HashSet of blocks

16KB blocks of same-size
objects and a header

Blocks can switch size classes
when they are empty

Free List per Size Class
(Segregated Free Lists)

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

16 byte

32 byte

64 byte

header

header

Header contains: • size class
• mark bits
• marking version
• occupancy count

Simple Segregated Storage

• Free list per size class

• Each 16KB block belongs to one size class

• Each block can self-identify size class

• Blocks maintain marking state

• Global HashSet of blocks

Bump’n’pop

Building free-lists is expensive

Building free-lists is expensive
Easily doubles cost of allocating small objects

• Have to check each mark bit

• Our mark bits are super compact

• This is as cheap as it gets

• But it’s still not free!

• Have to build linked list

• Touch 16KB

Completely
Empty

Completely
FullFragmented

Completely
Empty

Completely
FullFragmented

Super Common

Completely
Empty

Completely
FullFragmented

Super Common
High Infant Mortality

Completely
Empty

Completely
FullFragmented

Super Common Fairly Common
High Infant Mortality

Completely
Empty

Completely
FullFragmented

Super Common Fairly Common

Objects Allocated Together Have Similar Lifetimes
High Infant Mortality

Completely
Empty

Completely
FullFragmented

Super Common Fairly CommonUncommon

Objects Allocated Together Have Similar Lifetimes
High Infant Mortality

Completely
Empty Fragmented

Super Common Fairly CommonUncommon

Objects Allocated Together Have Similar Lifetimes

90%
Full

High Infant Mortality

GC rapidly identifies empty blocks

markingNotEmpty: 0 1 1

GC rapidly identifies empty blocks

markingNotEmpty: 0 1 1

No need to scan mark bits of empty blocks

GC rapidly identifies empty blocks

markingNotEmpty: 0 1 1

No need to scan mark bits of empty blocks

end

begin

GC rapidly identifies empty blocks

markingNotEmpty: 0 1 1

No need to scan mark bits of empty blocks

end

begin

GC rapidly identifies empty blocks

Empty blocks use bump allocator

markingNotEmpty: 0 1 1

No need to scan mark bits of empty blocks

bump’n’pop

end

begin

GC rapidly identifies empty blocks

Empty blocks use bump allocator

markingNotEmpty: 0 1 1

No need to scan mark bits of empty blocks

Simple segregated storage assumes
that all objects in a block have the

same size.

Our bump allocator preserves this.

Allocation Algorithm

1. Round up allocation size to size class

2. Allocate using size class’s size

I. First try bump

II. Then try pop

// bump

// pop

template<typename Func>
HeapCell* FreeList::allocate(const Func& slowPath)
{
 unsigned remaining = m_remaining;
 if (remaining) {
 unsigned cellSize = m_cellSize;
 remaining -= cellSize;
 m_remaining = remaining;
 return bitwise_cast<HeapCell*>(m_payloadEnd - remaining - cellSize);
 }

 FreeCell* result = head();
 if (UNLIKELY(!result))
 return slowPath();

 m_scrambledHead = result->scrambledNext;
 return bitwise_cast<HeapCell*>(result);
}

// bump

// pop

template<typename Func>
HeapCell* FreeList::allocate(const Func& slowPath)
{
 unsigned remaining = m_remaining;
 if (remaining) {
 unsigned cellSize = m_cellSize;
 remaining -= cellSize;
 m_remaining = remaining;
 return bitwise_cast<HeapCell*>(m_payloadEnd - remaining - cellSize);
 }

 FreeCell* result = head();
 if (UNLIKELY(!result))
 return slowPath();

 m_scrambledHead = result->scrambledNext;
 return bitwise_cast<HeapCell*>(result);
}

// bump

// pop

template<typename Func>
HeapCell* FreeList::allocate(const Func& slowPath)
{
 unsigned remaining = m_remaining;
 if (remaining) {
 unsigned cellSize = m_cellSize;
 remaining -= cellSize;
 m_remaining = remaining;
 return bitwise_cast<HeapCell*>(m_payloadEnd - remaining - cellSize);
 }

 FreeCell* result = head();
 if (UNLIKELY(!result))
 return slowPath();

 m_scrambledHead = result->scrambledNext;
 return bitwise_cast<HeapCell*>(result);
}

// bump

// pop

template<typename Func>
HeapCell* FreeList::allocate(const Func& slowPath)
{
 unsigned remaining = m_remaining;
 if (remaining) {
 unsigned cellSize = m_cellSize;
 remaining -= cellSize;
 m_remaining = remaining;
 return bitwise_cast<HeapCell*>(m_payloadEnd - remaining - cellSize);
 }

 FreeCell* result = head();
 if (UNLIKELY(!result))
 return slowPath();

 m_scrambledHead = result->scrambledNext;
 return bitwise_cast<HeapCell*>(result);
}

bump’n’pop uses scrambled free-lists

// bump

// pop

template<typename Func>
HeapCell* FreeList::allocate(const Func& slowPath)
{
 unsigned remaining = m_remaining;
 if (remaining) {
 unsigned cellSize = m_cellSize;
 remaining -= cellSize;
 m_remaining = remaining;
 return bitwise_cast<HeapCell*>(m_payloadEnd - remaining - cellSize);
 }

 FreeCell* result = head();
 if (UNLIKELY(!result))
 return slowPath();

 m_scrambledHead = result->scrambledNext;
 return bitwise_cast<HeapCell*>(result);
}

bump’n’pop uses scrambled free-lists
scrambled free-lists haven’t shipped yet!

indexing

type

flags

cell state

structure
ID butterfly pointer native buffer

indexing

type

flags

cell state

structure
ID butterfly pointer native buffer

indexing

type

flags

cell state

structure
ID butterfly pointer native buffer FreeCell::next

indexing

type

flags

cell state

structure
ID butterfly pointer native buffer FreeCell::next

indexing

type

flags

cell state

structure
ID butterfly pointer native buffer FreeCell::next0x31337c0defefebaadbeefaa

• Scramble the freelist with a per-freelist secret.

• Select a new secret every time we build a
freelist.

• Bump’n’pop is as fast as our previous copying
bump allocator, and faster than our previous
pop-only allocator.

• We also tried concurrent sweeping. Bump’n’pop
was faster.

• We also tried concurrent sweeping with
bump’n’pop. It wasn’t any better than just
bump’n’pop.

bump’n’pop

• Empty blocks don’t scan mark bits.

• Empty blocks don’t build free lists.

• 90% full blocks are treated as if they were full.

Constraint-Based
Marking

Constraint-Based Marking
• Transitive reachability is not always enough

• Common examples:

• Soft references

• Weak map

Constraint-Based Marking
• Transitive reachability is not always enough

• WebKit examples:

• Type inference

• Weak map

• DOM

• Native code

Constraint-Based Marking
• Transitive reachability is not always enough

• WebKit examples:

• Type inference

• Weak map

• DOM

• Native code

Constraint-Based Marking
• Transitive reachability is not always enough

• WebKit examples:

• Type inference

• Weak map

• DOM

• Native code

Type Inference

{1, 2}

{42, 3}

{-5, 7}

{x, y}

prototype

global
object

Objects

Structure

{1, 2}

{42, 3}

{-5, 7}

{x, y}

prototype

global
object

{1, 2}

{42, 3}

{-5, 7}

{x, y}

prototype

global
object

JIT code

{1, 2}

{42, 3}

{-5, 7}

{x, y}

prototype

global
object

JIT code

Is this a weak reference?

JIT code references a
structure

• Strong reference?

• Weak reference?

• Marking constraint?

Strong reference?

{x, y}

{1, 2}

{42, 3}

{-5, 7}

prototype

global
object

JIT code

Strong reference?

{x, y}

prototype

global
object

JIT code

Strong reference?

{x, y}

prototype

global
object

JIT code

Strong reference?

{x, y}

prototype

global
object

JIT code

so many leaks

JIT code

Weak reference?

{x, y}

{1, 2}

{42, 3}

{-5, 7}

prototype

global
object

JIT code

Weak reference?

{x, y}

prototype

global
object

JIT code

Weak reference?

{x, y}

prototype

global
object

JIT code

Weak reference?

{x, y}

prototype

global
object

recomp storm

structure

prototype

global
object

JIT
code

Marking Constraint

• JIT code references the structure weakly.

structure

prototype

global
object

JIT
code

Marking Constraint

• JIT code references the structure weakly.

• JIT code also registers the above marking
constraint.

if (isMarked(structure->globalObject())
 && isMarked(structure->storedPrototype()))
 mark(structure);

structure

prototype

global
object

JIT
code

Marking Constraint

JIT code

Marking Constraint!

{x, y}

{1, 2}

{42, 3}

{-5, 7}

prototype

global
object

JIT code

Marking Constraint!

{x, y}

prototype

global
object

JIT code

Marking Constraint!

{x, y}

prototype

global
object

It’s cool - the prototype and global object are long-lived.

JIT code

Marking Constraint!

{x, y}

{x, y}

JIT code

Marking Constraint!

{x, y}

JIT code

Marking Constraint!

We want the JIT code to die in this case.

Marking Constraint!

• If the objects that use the structure die, then:

• Keep structure alive if the user objects it points
to are alive anyway.

• Kill the structure (and the JIT code) if keeping
it alive would not be safe-for-space.

Marking Constraints

• Constraints can query which objects are
marked.

• Constraints can mark objects.

• GC executes constraints to fixpoint.

Native Code
Including the DOM

Native Code
Native Heap JS Heap

thingy

blah

bar

foo

Native Code
Native Heap JS Heap

thingy

blah

bar

foo

some native
UI toolkit

Native Code
Native Heap JS Heap

thingy

blah

bar

foo

some native
UI toolkit

JS proxy for
UI object

Native Code
Native Heap JS Heap

thingy

blah

bar

foo

some native
UI toolkit

JS proxy for
UI object

JS event
handler

Native Code
Native Heap JS Heap

thingy

blah

bar

foo

Strong Reference?
Native Heap JS Heap

blah

bar

thingy

foo

Strong Reference?
Native Heap JS Heap

blah

bar

thingy

foo

root

Strong Reference?
Native Heap JS Heap

blah

bar

thingy

foo

root live

Strong Reference?
Native Heap JS Heap

blah

bar

thingy

foo

root live

live

Strong Reference?
Native Heap JS Heap

blah

bar

thingy

foo

root

destroyed by foo’s finalizer,
so live

live

live

Strong Reference?
Native Heap JS Heap

blah

bar

thingy

foo

root

destroyed by foo’s finalizer,
so live

Leak!

live

live

Weak Reference?
Native Heap JS Heap

blah

thingy

foo

bar

Weak Reference?
Native Heap JS Heap

blah

thingy

foo

Weak Reference?
Native Heap JS Heap

blah

thingy

foo

bar dies premturely

Marking Constraint!
Native Heap JS Heap

blah

thingy

foo

bar
if (isMarked(foo))
 mark(bar)

Marking Constraints
• GC executes constraints to fixpoint.

• Useful for implementing:

• Type Inference

• Weak Maps

• DOM

• Native Code

• The most expensive marking constraint is
draining.

• Draining = graph search over strong references
between objects.

Parallel Draining

Parallel Draining

• CAS loop to set mark bits

• Handful of WTF locks

• Work donation

A

E
D

Q

B C
J

M

G

N

I

R
P

KF

H

O L

roots

mark
stack heap

A

E
D

Q

B C
J

M

G

N

I

R
P

KF

H

O L

roots

mark
stack heap

A

A

E
D

Q

B C
J

M

G

N

I

R
P

KF

H

O L

roots

mark
stack heap

A

A

E
D

Q

B C
J

M

G

N

I

R
P

KF

H

O L

roots

mark
stack heap

D

A

E
D

Q

B C
J

M

G

N

I

R
P

KF

H

O L

roots

mark
stack heap

R

D

A

E
D

Q

B C
J

M

G

N

I

R
P

KF

H

O L

roots

mark
stack heap

D

A

E
D

Q

B C
J

M

G

N

I

R
P

KF

H

O L

roots

mark
stack heap

A

E
D

Q

B C
J

M

G

N

I

R
P

KF

H

O L

roots

mark
stack heap

F

A

E
D

Q

B C
J

M

G

N

I

R
P

KF

H

O L

roots

mark
stack heap

mark
stack

A

E
D

Q

B C
J

M

G

N

I

R
P

KF

H

O L

roots

mark
stack heap

mark
stack

A

A

E
D

Q

B C
J

M

G

N

I

R
P

KF

H

O L

roots

mark
stack heap

mark
stack

A

A

E
D

Q

B C
J

M

G

N

I

R
P

KF

H

O L

roots

mark
stack heap

mark
stack

D

A

E
D

Q

B C
J

M

G

N

I

R
P

KF

H

O L

roots

mark
stack heap

R

mark
stack

Parallel Draining

• Donate work to global mark stack when we
detect fan-out.

• Stalled threads take 1/N of the global mark
stack.

Detecting Fan-out

• Once every 100 objects visited, check if it’s
worth donating.

• Only donate if the global mark stack is empty
and nobody holds the lock.

• Donate about half of local mark stack.

Parallel Draining

Sticky Mark Bits

• In most cases, young objects are much more
likely to die than old objects.

Generational GC

• Sticky Mark Bits = Generational GC without copying

YoungOld

YoungOld

YoungOld

We know that the object is young because of its address.

YoungOld

YoungOld

We know that the object is old because of its address.

• Traditional GenGC uses address to encode generation.

• We can just as easily use some bits in the object header.

Sticky Mark Bits

• Each object has a GC byte that tells us the
generational state:
• New

• Remembered

• Old

• Mark bits are not reset at the start of eden
collections.

o->field = p
if (o->cellState() == Old)
 remember(o); // state becomes Remembered

Sticky Mark Bits

• Generational GC without copying.

• Zero-cost write barrier.

• Essential for throughput.

Conservative Roots

Style Implications

Accutate

Native code uses handles
Compiler isolates pointers

Theoretically less object drag
Pain in the butt

Conservative

Native code uses raw pointers
Compiler treats pointers as integers

Possibly more object drag
Mark pinning
Super easy

Style Implications

Accutate

Native code uses handles
Compiler isolates pointers

Theoretically less object drag
Pain in the butt

Conservative

Native code uses raw pointers
Compiler treats pointers as integers

Possibly more object drag
Mark pinning
Super easy

Is this really a thing?

• Conservative object drag totally was a thing.

• We mitigated conservative object drag:

• 48-bit address space

• ASLR

• Stack sanitization

• See here for more sweet mitigations:  
http://www.hboehm.info/gc/

Fragmentation
Mitigation

• Most of WebKit’s heap is malloc memory
allocated by the DOM and HTML/CSS/SVG
rendering code.

• malloc mitigates fragmentations by modeling
first-fit.

• Not moving objects is the norm on desktop
systems.

Fragmentation Mitigations

• Simulate first-fit

• Coalesce and split

• 48-bit address space

Efficient Mark-Sweep
• Simple Segregated Storage

• Bump’n’pop

• Constraint-Based Marking

• Parallel “Draining”

• Sticky Mark Bits

• Conservative Roots

• Fragmentation Mitigations

Agenda
• Introduction

• JavaScriptCore

• Efficient Mark-Sweep

- 30 minute break

• Concurrent GC

• bmalloc

• WTF::Lock

